POCKET GUIDE TO
Parenteral Nutrition
SECOND EDITION

Editor
Pamela Charney
PhD, RD

Academy of Nutrition and Dietetics
Chicago, IL
Contents

List of Boxes, Tables, and Figures ... v

Frequently Used Terms/Abbreviations .. x

Contributors ... xiv

Reviewers ... xvi

Preface ... xviii

Acknowledgments .. xx

Chapter 1: The Nutrition Care Process and Evidence-Based Practice ... 1

Chapter 2: Indications for Parenteral Nutrition in Adults ... 19

Chapter 3: Vascular Access, Delivery Systems, and Intravenous Pumps ... 35

Chapter 4: Parenteral Nutrients and Formulations ... 66

Chapter 5: Initiation, Advancement, and Acute Complications ... 100

Chapter 6: Metabolic Complications of Long-Term Parenteral Nutrition ... 131
List of Boxes, Tables, and Figures

Boxes

Box 2.1 Nutrition Assessment Information Pertinent to Use of Parenteral Nutrition .. 21
Box 2.2 Examples of Conditions Likely to Require Parenteral Nutrition Across the Life Cycle 25
Box 2.3 Clinical Conditions Warranting Cautious Initiation of Parenteral Nutrition in Adults 29
Box 2.4 Common Indications for Home Parenteral Nutrition ... 32
Box 3.1 Calculating the Osmolarity of Parenteral Nutrition Solutions ... 39
Box 3.2 Complications of Vascular Access Device Placement ... 46
Box 3.3 Complications Associated with Central Catheter Placement ... 52
Box 3.4 Noninfectious Complications Associated with Vascular Access Devices ... 55

Box 4.1 Determination of Dextrose Intake Based on Desired Glucose Oxidation Rate ... 68

Box 4.2 Advantages and Disadvantages of Total Nutrient Admixtures .. 91

Box 4.3 Examples of Parenteral Nutrition Formulation Prescriptions ... 94

Box 5.1 Suggested Guidelines for Initial Parenteral Nutrition Prescription ... 106

Box 5.2 Factors to Consider When Advancing Parenteral Nutrition Volume and Macronutrients ... 108

Box 5.3 Glycemic Control Subcutaneous Insulin Order Set ... 114

Box 5.4 Glycemic Control Intensive Intravenous Infusion Order Set .. 116

Box 5.5 Factors That Place Patients at Risk for Hypertriglyceridemia .. 118

Box 5.6 Strategies to Limit or Avoid Complications Associated with Intravenous Lipid Emulsion ... 119

Box 5.7 Factors That Increase Risk for Refeeding Syndrome ... 120

Box 5.8 Strategies to Prevent and Treat Refeeding Syndrome .. 122

Box 5.9 Ways to Minimize the Effect of Parenteral Nutrition on Hepatic Function ... 125
Box 6.1 Potential Etiologies of Parenteral Nutrition–Associated Liver Disease .. 133

Box 6.2 Macronutrient Suggestions to Reduce Risk of Parenteral Nutrition–Associated Liver Disease 134

Box 6.3 Micronutrients and Non-Nutrient Factors That Can Affect Risk of Developing Parenteral Nutrition–Associated Liver Disease .. 134

Box 6.4 Reducing the Risk of Complications with Long-Term Parenteral Nutrition ... 144

Box 7.1 Indications for Home Parenteral Nutrition 152

Box 7.2 Medical Contraindications to Home Parenteral Nutrition ... 153

Box 7.3 Social Issues That Are Contraindications to Home Parenteral Nutrition .. 153

Box 7.4 Medicare Reimbursement Criteria for Home Parenteral Nutrition ... 155

Box 7.5 Information to Complete a Certificate of Medical Necessity for Home Parenteral Nutrition 158

Box 7.6 Discharge Information for Orders and Supplies Provided to the Home Parenteral Nutrition Home-Care Supplier ... 166

Box 7.7 Self-Monitoring of Fluid Balance ... 172

Box 7.8 Signs and Symptoms of Metabolic Abnormalities ... 173

Box 7.9 Patient Guide to Contacting the Home Parenteral Nutrition Clinician ... 174
Box 7.10 Laboratory Monitoring of Home Parenteral Nutrition .. 178
Box 7.11 Example of Routine Clinic Follow-Up Schedule for Home Parenteral Nutrition Patients .. 180

Tables

Table 3.1 Vascular Access Devices Used for Home Parenteral Nutrition .. 44
Table 4.1 Examples of Crystalline Amino Acid Formulations .. 69
Table 4.2 Fatty Acid Content of Select 20% Intravenous Lipid Emulsions .. 74
Table 4.3 Standard Daily Electrolyte Additions to Adult Parenteral Nutrition .. 77
Table 4.4 Daily Requirements for Adult Parenteral Vitamins ... 79
Table 4.5 Vitamin Content of Select Commercially Available Products .. 80
Table 4.6 Daily Trace Element Supplementation in Parenteral Nutrition Formulations in the United States .. 83
Table 4.7 Examples of Combination Parenteral Trace Element Products for Adults .. 84
Table 5.1 Recommended Information Needed Prior to Initiating Parenteral Nutrition 103
Table 5.2 Suggested Long-Term Monitoring ... 104
Table 5.3 Metabolic or Clinical Conditions That Warrant Delay or Cautious Use of Parenteral Nutrition

Table 5.4 Insulin Therapy Options During Parenteral Nutrition

Table 5.5 Insulin Correctional Scales

Table 6.1 Factors That Contribute to Metabolic Bone Disease

Table 6.2 General Dosage Recommendations for Specific Nutrients in Long-Term Parenteral Nutrition

Table 7.1 Sample Insulin Sliding Scale During Parenteral Nutrition Infusion

Table 7.2 Treating High Blood Glucose During Parenteral Nutrition Infusion

Figures

Figure 3.1 Vascular access sites for parenteral nutrition

Figure 3.2 Catheters for home parenteral nutrition

Figure 7.1 Home parenteral nutrition teaching checklist

Figure 7.2 Home nutrition support record
Frequently Used Terms/Abbreviations

AAC acute acalculous cholecystitis
AHRQ Agency for Healthcare Research and Quality
AMA American Medical Association
ASPEN American Society for Parenteral and Enteral Nutrition
ASHP American Society of Health-System Pharmacists
AA amino acid
AAA aromatic amino acid
ACD automated compounding device
BMTs bone marrow transplants
BCAA branched chain amino acid
CRBSI catheter-related blood stream infection
CDC Centers for Disease Control and Prevention
CMS Centers for Medicare and Medicaid Services
CVC central venous catheter
CMN Certificate of Medical Necessity
CKD chronic kidney disease
CBC complete blood count
CII continuous insulin infusion
D10W dextrose
DME direct medical equipment
eNCPT electronic Nutrition Care Process Terminology
EN enteral nutrition
EFAD essential fatty acid deficiency
ESPEN European Society for Clinical Nutrition and Metabolism
EAL Evidence Analysis Library
EBP evidence-based practice
FDA US Food and Drug Administration
GI gastrointestinal
GIR glucose infusion rate
GRADE Grading of Recommendations, Assessment, Development and Evaluation
HPN home parenteral nutrition
ICU intensive care unit
IDPN intradialytic parenteral nutrition
IV intravenous
IVFE intravenous fat emulsion
ILE intravenous lipid emulsion
MST Malnutrition Screening Tool
MCT medium chain triglyceride
MBD metabolic bone disease
NPO nil per os
NCP Nutrition Care Process
NFPE nutrition-focused physical examination
NST nutrition support team
PN parenteral nutrition
PNALD parenteral nutrition–associated liver disease
PICC peripherally inserted central catheters
PPN peripheral parenteral nutrition
PES problem, etiology, and signs and symptoms
POC point of care
PVC polyvinyl chloride
RDN registered dietitian nutritionist
RN registered nurse
smof Smoflipid
SCCM Society of Critical Care Medicine
SQ subcutaneous
SVC superior vena cava
TNA total nutrient admixture
VAD vascular access device
Contributors

Editor
Pamela Charney, PhD, RD
Associate Professor, University of North Georgia
Dahlonega, GA

Contributors
Therese Berry, MS, RD, LD, CNSC
Nutrition Support Dietitian, Coram CVS/Specialty Infusion
Solon, OH
Ainsley Malone, MS, RDN, LD, CNSC, FAND, FASPEN
Nutrition Support Team, Mt. Carmel West Hospital
Columbus, OH
Clinical Practice Specialist, The American Society for Parenteral and Enteral Nutrition
Silver Spring, MD

Mary Marian, DCN, RDN, CSO, FAND
Assistant Professor of Practice
Director, Didactic Program in Dietetics, University of Arizona
Tucson, AZ

Susan Roberts, MS, RDN, LD, CNSC
Area Director of Clinical Nutrition, Baylor Scott & White Health
Dietetic Internship Director, Baylor University Medical Center
Dallas, TX
Reviewers

Mara Lee Beebe, MS, RD, LD, CNSC
Clinical Dietitian, The Ohio State University Wexner Medical Center
Columbus, OH

Jennifer R. Bridenbaugh, MS, RDN, CNSC
Assistant Professor
Clinical Coordinator, Rutgers School of Health Professions
Newark, NJ

Mandy L. Corrigan, MPH, RD, CNSC, FAND
Manager, Home Nutrition Support Service for Gut Rehabilitation and Transplantation, The Cleveland Clinic
Cleveland, OH

Jennifer Lefton, MS, RDN, CNSC, FAND
Clinical Nutrition Specialist, Medstar Washington Hospital
Washington, DC
Jay M. Mirtallo, MS, RPh, BCNSP, FASHP, FASPEN
Professor of Clinical Pharmacy
Director, MS in Health System Pharmacy, The Ohio State University
Columbus, OH

Michelle M. Romano, MS, RDN, CNSC
Manager, Parenteral Nutrition, Clinical Nutrition Medical Affairs, Fresenius Kabi, USA
Lake Zurich, IL

Laura Williams, MS, RD, LD, CNSC
Registered Dietitian, The Cleveland Clinic
Cleveland, OH
Preface

The year 2018 marks the 52nd anniversary of the first use of parenteral nutrition (PN) in humans. Since its introduction, thousands of patients have benefited from this life-saving therapy. As members of interdisciplinary healthcare teams caring for patients receiving PN, registered dietitian nutritionists (RDNs) are often responsible for determining the need for PN, ordering nutrient solutions, monitoring patient response to therapy, and coordinating care with patients, caregivers, and other members of the healthcare team.

Since publication of the first edition of the *ADA Pocket Guide to Parenteral Nutrition* in 2007, there have been many changes in how PN is ordered, compounded, and infused. Ten years ago, amino acids were limited to only three or four concentrations, and there was only one lipid solution. Now clinicians can select from multiple amino acid concentrations and several new types of lipid solutions designed to prevent PN associated liver disease. While PN was ordered using paper forms in the past, most now use electronic ordering systems that
have built-in tools that provide information and decision support at the point of care.

Ordering PN remains one of the highest risk activities for even experienced RDNs. As RDNs take responsibility for ordering PN, it is incumbent on them to demonstrate competency to practice in this area.

The text begins with a review of the Nutrition Care Process as it relates to PN and evidence-based practice, proceeds with guidelines for patient selection, and continues through all of the steps required for safe use of PN therapy. In addition to chapters covering ordering, implementation, and monitoring of PN, there are chapters that will be useful for RDNs working in home care and patient education.

This Pocket Guide provides easy-to-understand, step-by-step guidance to serve as a quick reference for RDNs and other members of the nutrition support team. The text is written in a way that will be useful at all levels of practice, including students, novice, and more experienced RDNs.
I would be remiss if I did not offer my sincere thanks and appreciation to my coeditor of the first edition of the *ADA Pocket Guide to Parenteral Nutrition*, Ainsley Malone, MS, RD, LD, CNSC, FADA. Without her knowledge and patience, the first edition would not have been possible. Not only did we collaborate on this Pocket Guide, but we also became great friends. I would also like to thank our authors and reviewers, who shared their expertise in making this edition possible, as well as the multidisciplinary team members at Baylor Scott and White Health in Dallas, TX, for their involvement in the development of the order sets adapted for Chapter 5. Additionally, I owe a significant debt of gratitude to the publications staff at the Academy of Nutrition and Dietetics, who shepherded this publication from start to finish!
CHAPTER 1

The Nutrition Care Process and Evidence-Based Practice

The Nutrition Care Process

The Nutrition Care Process (NCP) was developed by the Academy of Nutrition and Dietetics as a mechanism to provide nutrition and dietetics professionals with a framework for critical thinking and decision making in all practice settings.\(^1\) In clinical practice, the NCP serves as a mechanism to ensure that nutrition care is provided for the right patient/client/population, at the right time, by the right professional. The following presents
a review of the NCP, with additional information as it applies to parenteral nutrition.

The objectives of the NCP are:

• to provide a standardized process of care

• to support and promote individualized and population care

• to support and encourage use of critical thinking skills, and

• to serve as a structure to validate nutrition care and show that the care provided met the intended purpose.

Nutrition and dietetics terminology published in the electronic Nutrition Care Process Terminology (eNCPT) provides a mechanism to generate qualitative and quantitative data that can be analyzed and interpreted.

The NCP provides a framework to standardize and facilitate the delivery of nutrition care and serve as the basis to document a rigorous approach to assessment of nutritional status, diagnosis of nutrition problems, determination of appropriate treatment, and evaluation of nutrition care. The four steps of the NCP are:

1. Nutrition Assessment
2. Nutrition Diagnosis
3. Nutrition Intervention
4. Nutrition Monitoring and Evaluation

The eNCPT includes standardized terms used to describe each step of the NCP.
Nutrition Screening

Because nutrition screening may be completed by indi-
viduals who are not registered dietitian nutritionists
(RDNs), it is considered an entry system and not a step
in the NCP. The NCP, however, does rely on screening
to identify patients who may have a nutrition diagnosis
that would be treated by an appropriate nutrition inter-
vention, including parenteral nutrition (PN). Therefore,
accurate nutrition risk screening is a key antecedent
activity in the overall process.

The nutrition risk screening process should be
designed to quickly and accurately identify patients
who may have a nutrition diagnosis or may be at risk for
development of nutrition-related complication.

Whenever possible, a validated nutrition risk screen
should be utilized. There are several nutrition risk
screens that have been validated, including the Mal-
nutrition Screening Tool (MST), which has been
recommended for use in acute care settings.

Nutrition Assessment

If risk is identified through the nutrition screening pro-
cess, a comprehensive nutrition assessment should be
performed to diagnose nutrition problems and deter-
mine the best mechanism to treat those nutrition
diagnoses. While PN can be a life-saving therapy, inap-
propriate use of PN carries significant risks. Because
PN should only be initiated when the patient cannot or should not consume adequate nutrients via the oral or enteral route, nutrition assessment should include careful evaluation of the gastrointestinal (GI) system along with current nutrient intake.

The NCP provides RDNs with a framework for completing nutrition assessments. A comprehensive nutrition assessment includes evaluation of the following:

- food- and nutrition-related history
- anthropometric measurements
- biochemical data, medical tests, and procedures
- nutrition-focused physical findings
- client history

Once all pertinent information is gathered, RDNs are responsible for diagnosing nutrition problems. RDNs utilize critical thinking skills to carefully evaluate and prioritize information that will support the correct nutrition diagnosis. If the RDN does not have reasonable certainty that a nutrition diagnosis is present, additional assessment information must be gathered until there is certainty that there is no nutrition diagnosis or that the correct nutrition problem has been diagnosed.

Nutrition Diagnosis

RDNs are responsible for evaluating information gathered during the nutrition assessment in order to
correctly diagnose nutrition problems. In addition to determining the best intervention to treat the nutrition diagnosis, RDNs must be able to clearly and effectively communicate the nutrition diagnosis to other members of the health care team, patients/clients, and caregivers. Terms from the nutrition diagnosis section of the eNCPT can be used to document nutrition diagnoses in a way that allows other RDNs and health care providers to clearly understand what was diagnosed.

Many RDNs communicate and document nutrition diagnoses using the PES (problem, etiology, and signs and symptoms) format. A complete review of the PES format is beyond the scope of this guide. Readers are referred to the online eNCPT reference (subscription based; www.ncpro.org) for more information on the nutrition diagnosis statement or PES statement.

PN is typically initiated in patients who cannot or should not meet their nutrient requirements by oral or enteral nutrition. Nutrition diagnoses that may be associated with the need for PN include (but are not limited to) the following:

- inadequate energy intake
- inadequate oral intake
- inadequate enteral nutrition infusion
- inadequate protein-energy intake
- altered GI function
Note that Reference Sheets of these and other eNCPT terms provide a full profile of the term that includes a definition, assessment indicators, use examples, and criteria for evaluation.²

Because patients who require PN tend to have very complex health histories, it is not uncommon to see multiple nutrition diagnoses. Identification of all nutrition diagnoses is important. A complete nutrition diagnosis includes the etiology (as part of the PES statement of nutrition diagnosis), which drives the intervention. For example, if the patient has “inadequate energy intake” related to “altered GI function,” the justification of PN as an intervention can be supported.

Nutrition Intervention

Nutrition interventions are actions that RDNs are responsible for taking in order to resolve or improve nutrition diagnoses.¹ Nutrition interventions include actions related to food and nutrient delivery, nutrition education, nutrition counseling, and coordination of care. Identification of the most appropriate nutrition intervention is driven by etiology in the PES statement of the nutrition diagnosis. The intervention must directly focus on alleviating or managing the etiology. For example, if the nutrition diagnosis is “parenteral nutrition composition inconsistent with needs,” and the identified etiology is “excessive dextrose delivery (calculated at 9 mg/kg/min),” the intervention may be
to reduce dextrose delivery rate. If the nutrition diagnosis is an “imbalance of nutrients” related to etiology “insufficient phosphorus to support metabolism of carbohydrate from infusion of PN,” the intervention may be to increase phosphorus provision. Hence, identifying the “why” (etiology) of a nutrition problem is key to provide the optimal “solution” (intervention).

Most of the nutrition interventions directly related to PN fall in the Food and/or Nutrient Delivery Domain, in ND-2 (Enteral and Parenteral Nutrition) of the eNCPT. Interventions may include the following:

- Initiate PN. (There is no term for initiation of PN; instead, initiation of PN would fall under “Coordination of Nutrition Care by a Nutrition Professional.”)
- Modify the rate, concentration, composition, schedule, and duration of the feeding.
- Provide parenteral nutrition site care.

An exception to this would be the provision of education to patients or caregivers, which would fall under Nutrition Education (E). When considering appropriate nutrition interventions, other considerations include end-of-life issues, ethical considerations, patient rights, family/caregiver issues, availability of and access to a qualified practitioner for follow-up and monitoring, and economic constraints that limit the availability of PN.
Monitoring and Evaluation

The monitoring and evaluation step of the NCP offers the clinician the opportunity to review the progress of PN support and to set goals that may include a trial of enteral nutrition (EN) or an oral diet. Monitoring and evaluation must be done at regular intervals, and the RDN must appropriately document progress toward goals set. Monitoring and evaluation should continue until the nutrition diagnosis has been successfully treated or there is a change in the patient’s status that requires a change in the intervention.

Evidence for Parenteral Nutrition

Evidence-based practice (EBP) has been defined as “the conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients.”6,7

Guidelines and recommendations have been developed to assist RDNs in determining if there is sufficient evidence to support the use of PN in a given situation.8 However, RDNs must evaluate each guideline or recommendation prior to application in clinical practice in order to determine if the guideline applies to the current patient or if the guideline has sufficient strength.
How Are Guidelines Created?

Regulatory agencies and third-party payers may require the use of EBP as a condition for reimbursement. In developing guidelines, clinicians will systematically search the literature for studies to answer clinical questions. However, not all evidence sources and studies are created equal. Systematic reviews of the literature with meta-analysis are considered by most to be the highest level of evidence, while expert review or consensus is considered to be the lowest level of evidence.

- **Clinical Practice Guidelines / Health Technology Assessment**
- **Systematic Review Meta-Analysis**
- **Randomized Controlled Trial**
- **Controlled Clinical Study**
- **Retrospective / Prospective Cohort**
- **Case Report / Case Series**
- **Expert Opinion**

Study-Level Data

Subject-Level Data
From weakest to strongest, the levels of evidence are:

- expert opinion/consensus—weakest
- case study and case-controlled studies
- cohort studies
- randomized controlled trials
- evidence synthesis
- systematic review with meta-analysis—strongest

How to Find Guidelines

Many health care professional organizations provide guidelines that are focused on a given specialty area or answer a specific clinical question. The Academy of Nutrition and Dietetics offers the Evidence Analysis Library (EAL), which is a series of systematic reviews and evidence-based nutrition practice guidelines.9,10 Access to the EAL is free for Academy of Nutrition and Dietetics members.

The Agency for Healthcare Research and Quality (AHRQ) sponsors the National Guideline Clearinghouse, a free resource available through the AHRQ website (www.guidelines.gov).11 The website is host to a database containing hundreds of guidelines that can be searched by the clinical condition or by the society that provided the guideline.

The Cochrane Library includes the Cochrane Database of Systematic Reviews, which were created by a dedicated group of volunteers working with an editorial
team. There are over 9,000 systematic reviews included in the Cochrane Library. Each review was created using stringent guidelines for the entire process.¹²

How to Evaluate Guidelines

There are several different questions the practitioner can ask when examining new guidelines, such as:

- Are there clear objectives for the review or guideline?
- Are the methods for the literature search clearly described?
- Are inclusion and exclusion criteria clearly defined?
- Were primary studies evaluated using pre-defined, explicit criteria?
- Was the quality of each study determined?
- Were results reported along with meta-analysis (if appropriate)?
- Were the results interpreted in terms of implications for clinical practice?¹³

Guidelines and Recommendations Related to Parenteral Nutrition

In 2016 the Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral
Nutrition (ASPEN) collaborated on the development of guidelines for the use of nutrition support in critically ill adult patients. While these guidelines are frequently used as a basis for decision making in patient care, practitioners must remember that the guidelines are based on expert consensus. Although published in 2016, the guidelines do not include studies published after 2013.

The SCCM/ASPEN guidelines utilized the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) process for determining the strength of each recommendation. Using this process of grading, four levels of strength for an individual study can be determined:

- **High**—A great deal of confidence in the results
- **Moderate**—A chance that the true effect is different from the study results
- **Low**—Limited confidence in the results
- **Very low**—Very low confidence in the results

Review of Guidelines

In general, EN rather than PN should be considered when nutrition support is indicated, particularly if the GI tract is even partially functional. The only condition that would be an absolute indication for PN would be when the GI tract is completely nonfunctional. However, when PN is indicated or being considered, RDNs must understand how PN is utilized in different clinical
situations. A review of selected guidelines that discuss which intervention to use—PN or EN—in specific disease states follows.

Oncology

The impact of cancer on nutritional status depends on tumor type, stage, location, and treatment. Many contributing factors, including poor intake, alterations in taste and smell, alterations in intermediary metabolism, and side effects from antineoplastic therapies, are thought to be associated with poor voluntary intake resulting in deterioration in nutritional status. While routine use of PN in patients undergoing cancer treatment is discouraged, there may be some benefit to the use of PN in patients who are receiving bone marrow transplants (BMTs). However, a systematic review found a moderate level of support for the use of EN over PN in patients receiving allogeneic BMT.

Critical Illness

Guidelines published in 2016 recommend initiation of PN when it is anticipated that previously well-nourished critically ill patients will not meet their nutritional needs via oral or enteral feeding for more than 7 days, although evidence to support this recommendation was weak. Additionally, PN should be considered as soon as possible after intensive care unit (ICU) admission for patients
who are already malnourished. PN should also be considered as a supplement to EN if EN cannot be advanced to at least 60% of caloric goals within 7 to 10 days.

Gastrointestinal Disease

Malnutrition is often associated with GI conditions, such as Crohn’s disease and ulcerative colitis, and is generally thought to be caused by malabsorption of macro- and micronutrients. Weight loss, vitamin and mineral deficiencies, and anemia are commonly seen as a result of untreated malnutrition. A recent systematic review stated that PN should only be used in patients with inflammatory bowel disease when EN is not tolerated or feasible.

Renal Failure

Acute and chronic renal disease is associated with an increased risk for deterioration in nutritional status due to hypermetabolism, the presence of a chronic inflammatory state, and poor intake related to alterations in taste, nausea, and anorexia. However, EN is always the first therapy of choice for patients with acute or chronic renal failure who are not able to meet their nutrient needs via voluntary oral intake.

Intradialytic parenteral nutrition (IDPN) involves infusing a small volume of PN during hemodialysis. There is little evidence that IDPN is associated with improved nutritional status. Practitioners should
remember that (1) IDPN only supplements other forms of nutrition therapy, (2) IDPN does not increase oral nutrition intake, and (3) IDPN is expensive and may not qualify for reimbursement.20

Peripheral Parenteral Nutrition

Peripheral parenteral nutrition (PPN) is defined as provision of a less concentrated form of PN via a peripheral vein. Most limit PPN to less than 10% final concentration of dextrose and less than 3% final concentration of amino acids. Lipids may or may not be included in PPN. In order for an individual to receive adequate energy, protein, and other nutrients via PPN, a large fluid volume would be required. PPN may be a useful temporary method to provide partial nutrition support in patients with mild to moderate malnutrition until oral or enteral nutrition is resumed or central PN access is obtained. One study showed no difference in outcomes between PPN and standard fluid therapy following colorectal surgery.21 PPN tends to be poorly tolerated mainly due to limited suitable peripheral veins that make it difficult and time consuming to maintain access.

Conclusion

PN is considered life-saving therapy for patients who have a nonfunctioning GI tract. Patients with severe intestinal dysfunction, short bowel syndrome,
mechanical bowel obstruction, intractable diarrhea or vomiting, large output fistulas, severe abdominal distention, mesenteric vascular insufficiency, gut ischemia, or infarction are generally the best candidates. Administration of PN is associated with more severe complications and costs than administration of EN. Therefore, EN should be considered as the preferred modality when nutrition support is indicated. The risks and benefits associated with PN must be carefully weighed before support is initiated.

References

Index

Page numbers followed by b indicates box; f, figure; t, table.

2-in-1 PN formula, 61–62, 90, 94b
3-in-1 PN formula, 61–62, 73, 76, 90, 91b, 94b, 119. See also total nutrient admixture (TNA)

AAs. See amino acids (AAs)
AAAs. See aromatic amino acids (AAA)
AAC. See acute acalculous cholecystitis (AAC)
Accreditation Commission for Healthcare, 165
ACDs. See automated compounding devices (ACDs)
acetate, $70t$, $77t$, 178b
acute acalculous cholecystitis (AAC), 123–124
acute respiratory distress syndrome, 74
additives, 78, 85, 86–87, 102
advancement, of parenteral nutrition formulation, 105–108
Agency for Healthcare Research and Quality (AHRQ), 10
AHRQ. See Agency for Healthcare Research and Quality (AHRQ)
air embolism, 47b, 53b, 55b
alanine, 70b
allergic reactions, 75, 125–126
aluminum, 85, 137, 140–141, 142t
AMA. See American Medical Association (AMA), vitamin requirements of
American Medical Association (AMA), vitamin requirements of, 78, 139
American Regent, 84, 94
American Society for Parenteral and Enteral Nutrition (ASPEN)
 appropriate use of parenteral nutrition, 23, 71
 GRADE process, 11–12
 on aluminum intake
 on formula calculations, 93
 on glucose intake, 109
American Society of Health-System Pharmacists (ASHP), 88
amino acids (AAs), 69, 69–70t, 71–76, 92b
 and bone disease, 137, 137t
 and liver disease, 133b
 and osmolarity, 39b
 crystalline formulations, 69, 69–70t
 dosage recommendations, 141t
 in delivery systems, 61
 specialized formulas, 66, 71–76, 94b
Aminosyn II solution, 69–70t
anaphylaxis, 125, 126, 139–140
anemia, 139, 178b, 181
antimicrobial catheters, 60. See also catheters
arginine, 70t
aromatic amino acids (AAA), 71. See also amino acids
arterial stick, 47b, 53b
ascorbic acid. See vitamin C (ascorbic acid)
aspartic acid, 70t
ASHP. See American Society of Health-System Pharmacists (ASHP)
ASPN. See American Society for Parenteral and Enteral Nutrition (ASPN)
automated compounding devices (ACDs), 67, 89
azotemia, 107t

B Braun Medical Inc, 69–70t, 74t, 94
bacteria, in vascular access devices, 59, 73
bacterial resistance, 60
Baxter International, Inc., 69–70t, 74t, 80–81t, 94
BCAA. See branched chain amino acids (BCAAs)
biofilm formation, 59–60
biotin, 79t, 81t
bisphosphonate therapy, 138
bone disease, parenteral nutrition–related, 136–138, 137t, 140, 181
bone marrow transplantation, 13
bowel obstruction, 32b, 152b
brachial veins, 39
branched chain amino acids (BCAAs), 71. See also amino acids
breakage, of catheter, 44t, 47b, 53b, 174
burns, 123
calcium, 76, 77t, 78, 137, 141, 141t
cancer, 13, 120
Candida infection, 59
carbohydrates, 67, 110, 117b, 121, 125b, 134b
cardiac cachexia, 120b
carnitine, 86–87, 133b, 140
deficiency, 135
catheter pinch-off, 48b, 54b
catheter-related bloodstream infection (CRBSI), 46, 58–60
catheters. *See also* vascular access devices (VADs)
antimicrobial, 60
care of, 23, 49–51, 174, 174–176b
central. *See* central venous catheters
complications from, 48b, 52–54b, 55–56b, 57, 58–59, 92b, 135b, 174
exit sites, 174
implanted, 43t
midclavicular, 40
midline, 40
nontunneled temporary, 38–40, 40–41, 44t, 159
patency of, 51
peripheral. *See* peripherally inserted central
 catheters (PICCs)
placement of, 30, 37f, 38–42, 47b
tunneled, 42, 43t, 44t
Centers for Medicare and Medicaid Services (CMS), 154
central parenteral nutrition (CPN)
catheter placement for. *See* central venous catheters (CVCs)
dextrose concentrations in, 67
formula osmolarity for, 39, 40b
central venous catheters (CVCs), 30, 44t. See also catheters complications of, 52–54b
placement of, 36
cephalic veins, 38, 39
Certificate of Medical Necessity (CMN), 157–158
chemotherapy, 25b, 36, 46
chloride, 70t, 77t, 107t
cholecystitis. See acute acalculous cholecystitis (AAC)
cholestasis, 124, 135b
choline, 125b, 133b, 135b, 140
chromium. 83t, 84t
chronic kidney disease (CKD), 30
chylothorax, 46b, 53b
CKD. See chronic kidney disease (CKD)
Cleveland Clinic training checklist, 169f
clinic follow-up, 179, 180b
CMN. See Certificate of Medical Necessity (CMN)
CMS. See Centers for Medicare and Medicaid Services (CMS)
Cochrane Library, 10–11
colitis, 14, 25t
Community Health Accreditation Program, 165
complications
of bariatric surgery, 32b
from fatty acids, 73–74
gallbladder, 123–125
hepatic. See hepatic dysfunction
of home parenteral nutrition, 179–180
with intravenous lipid emulsions, 119b
infectious, 57, 58
of long-term parenteral nutrition, 16, 22–23, 42, 58, 143, 181
of peripherally inserted central catheter lines, 48
of vascular access devices, 40, 46–48, 49–50, 52, 52–54, 55–56
continuous insulin infusion, 110, 112–113. See also insulin
copper, 83, 84, 85, 134, 140
CPN. See central parenteral nutrition (CPN)
critical illness, 13–14, 118
CRBSI. See catheter-related bloodstream infection (CRBSI)
Crohn’s and Colitis Foundation, 176
Crohn’s disease, 14, 32
crystalline amino acids, 69, 69–70. See also amino acids (AAs)
CVCs. See central venous catheters (CVCs)
cyanocobalamin. See vitamin B-12(cyanocobalamin)
cyclic infusion, 135

cysteine, 70

Dacron velour cuff, 43, 44, 57
dehydration, 106, 170, 172

dextrose, 67–68
 and delivery systems, 61, 89–90, 160
 and hyperglycemia risk, 108, 109–110
 and liver disease, 133
 and osmolarity, 6–7, 15, 39, 67–68, 68, 94, 141–142
 and total nutrient admixture stability, 76
diabetes mellitus, 109–111, 123, 164. *See also* glucose; hyperglycemia
diarrhea 16, 25*t*, 160, 170
dietitian. *See* registered dietitian nutritionist (RDN)
diphenhydramine, 126
discharge planning, 151, 165, 166–167*b*
dislodgment, of catheter, 44–45*t*, 56*b*
dl-alpha-tocopherol acetate. *See* vitamin E (dl-alpha-tocopherol acetate)
dressing regimens, for catheter sites, 50, 59
Durable Medical Equipment Regional Carrier, 154
dysmotility disorder, 152
dyspnea, 75, 101, 126

EAL. *See* Evidence Analysis Library (EAL)
EBP. *See* evidence-based practice (EBP)
EFAD. *See* essential fatty acid deficiency (EFAD)
egg phospholipids, 75, 125–126
electrolytes, 76–78, 103*t*
 - in amino acid formulations, 69, 70*t*
imbalances in, 108*b*, 121
 - role in metabolic abnormalities, 172
 - with refeeding syndrome, 122*b*
 - and osmolarity, 39*b*, 69, 77*t*
enteral nutrition
 - transition to, 144*b*, 179
 - *vs* parenteral nutrition, 22–23

Enterococcus infection, 59

ergocalciferol. *See* vitamin D (ergocalciferol)
Escherichia coli infection, 59
essential fatty acid deficiency (EFAD), 73–75, 118, 141
ethanol-lock technique, 60
Evidence Analysis Library (EAL), 10
evidence-based practice (EBP), 8–9
exit sites, for catheters, 43, 49, 57

fats. See lipids
fatty acids, 72–74, 74t, 133b, 160
femoral veins, 39, 44t
fistulas, 32b, 84, 152b, 160, 170
fluid balance, 103t, 104t, 122b, 172b
fluid overload, 106b, 108b, 170, 172b. See also
 overhydration
flushing, of catheters, 51, 55b
folic acid, 79t, 81t
Food and Drug Administration. See US Food and Drug
 Administration (FDA), 78, 88
FreAmine III solution, 69–70t, 94
Fresenius Kabi, 2–73, 74t
gallbladder complications, 123–125
gastrointestinal tract function
 and patient selection, 20
 and vitamin needs, 84
gauze dressings, 50
glucose
 monitoring of, 68, 109, 114b, 116–117b, 162–165
 during refeeding syndrome, 121
glucose infusion rate/glucose oxidation rate, 68, 68b
glutamic acid, 70t
glutamine, 86
 and hepatic dysfunction, 124, 125b
 for pancreatitis, 133b
glycerol, 73
glycine, 70
guidelines, for parenteral nutrition, 8–16

hand hygiene, 50
Healthcare Infection Control Practices Advisory Committee, on catheter placement, 40
hemothorax, 46b, 53b
hepatic dysfunction, 118b, 124, 125b, 135b
hepatic formulas, 71
histamine 2-receptor antagonists, 87, 135b
histidine, 70t
home parenteral nutrition (HPN)
 contraindications for, 153b
 complications of, 58–59, 132, 136
 formula calculation for, 159–160
 indications for, 31, 32b, 152–153, 152b
 infusion schedule for, 160–161, 164
 Medicare criteria for, 154
 patient education on, 51–52, 167–168
 patient resources for, 176–177
 patient selection for, 150
 provider selection, 150
 teaching checklist, 169f
 vascular access device use in, 44–45t
Hospira, 80t, 94
HPN. See home parenteral nutrition (HPN)
hydration, 170, 172b, 177
hydrothorax, 46b, 53b
hyperbilirubinemia, 86, 124, 134b, 140
hypercalciuria, 136, 137t
hyperchloremic metabolic acidosis, 107t
hyperglycemia, 29b, 160b, 107t, 108b, 109–111, 118b, 138, 162, 173b
hyperkalemia, 173b
hypermetabolism, 14
hypernatremia, 29b, 107t
hyperosmolality, 41, 107t
hypertriglyceridemia, 29, 160b, 111–119, 118b
hypocalcemia, 173b
hypochloremic metabolic alkalosis, 107t
hypoglycemia, 115t, 116b, 162, 173t
hypokalemia, 107t, 121, 173b
hypomagnesemia, 29b, 107t, 121, 173b
hypophosphatemia, 29b, 107t, 121, 173b

IDPN. See intradialytic parenteral nutrition (IDPN)
ILE. See intravenous lipid emulsion (ILE)
infection, 57–60
 in the bloodstream, 59–60
 and liver dysfunction, 123, 135b
 from vascular access devices, 50, 58
 initiation protocol, 102
insulin, 87, 110–111, 112–113t, 114b, 115t, 116–117b, 121, 162–164, 163t
insurance coverage. See Medicare/Medicaid coverage
intestinal ischemia, 16, 33, 123, 152b
intestinal transplantation, 136
intradialytic parenteral nutrition (IDPN), 14–15, 30
Intralipid, 74t
intravenous fat emulsion (IVFE), 72
intravenous lipid emulsion (ILE), 72–75, 94b, 110, 111,
118–119, 119b, 125–126
iodine, 50
iron, 83t, 139–140, 142t, 178b
isoleucine, 69t, 71
IVFE. See intravenous fat emulsion (IVFE)

Joint Commission, 165
jugular veins, 38–39, 41, 44t

Klebsiella pneumoniae infection, 59

laboratory values
 during parenteral nutrition, 177, 178b
 prior to initiating parenteral nutrition, 103t
leucine, 69t, 71
linoleic acid, 72, 74t
linolenic acid, 72, 74t
lipids, 61–62, 72–74, 75, 76, 118, 125b, 133, 133b, 134b, 138–
139
liver disease, *See* parenteral nutrition associated liver
disease (PNALD)
liver dysfunction, 103t, 104t, 124, 178b
lysine, 69t, 86, 135b

macronutrients, 67–70, 105, 106b, 108b, 125b, 133, 138–
139. *See also* specific nutrients
magnesium, 77t, 107t, 121, 137, 139, 178b
malnutrition, 14, 28, 76–77, 120, 156b
manganese, 83t, 84–85, 84t, 134b, 140, 142t
MBD. See metabolic bone disease (MBD)
Medicare/Medicaid coverage, 154–157, 155b, 156b, 157b
medications, in parenteral nutrition formulations, 87, 108b, 160
metabolic abnormalities, 172, 173b
metabolic acidosis, 107t, 137t, 138
metabolic bone disease (MBD), 136–138, 141t
methionine, 69t, 86, 135b
micronutrients, 134b, 135b, 136b, 139–142, 144. See also specific nutrients
midclavicular catheters, 40. See also catheters
midline catheters, 40. See also catheters
monitoring recommendations, during parenteral nutrition, 8, 78, 84, 102, 104t, 109, 160, 162–165, 166b, 170, 177, 178b, 179
Multitrace solutions, 84
multivitamin preparations, 78, 125, 139. See also vitamins
MVI solutions, 80t

NCP. See Nutrition Care Process (NCP)
nerve injury, 48b, 54b
neurologic impairment, 121, 140
niacinamide, 80t
niacin. See vitamin B-3 (niacin)
nitrogen, 69, 69t, 71, 103t, 104t, 122b, 133b, 178b
nontunneled temporary catheters, 38–40, 40–41, 44t, 159. See also catheters
Nutrilipid, 74t

NST. See nutrition support team (NST)
nutrition assessment, 2, 3–4, 21b, 101–102, 156–157b, 159, 179
Nutrition Care Process (NCP), 1–8
nutrition diagnosis, 2, 4–6
nutrition intervention, 2, 6–7, 20
nutrition screening, 3
nutrition support team (NST), 149, 150, 166, 176

occlusion, 48b, 50, 51, 54b, 55–56b, 174b
octreotide, 160
oil application, topical, 118–119
oleic acid, 74t
Oley Foundation, 176
Omegaven, 133
oncology. See cancer
osmolality, 35, 37
calculation of, 38, 39b
 formula, 90–93
overhydration, 106b, 108b, 170, 172b. See also fluid overload
oxalate, 82, 142t

palliative care, in parenteral nutrition, 31
palmitic acid, 74t
pancreatitis, 26b, 32
 triglyceride-induced, 111, 118b
pantothenic acid, 79t
parenteral nutrition (PN). See also home parenteral nutrition (HPN)
advancement of, 105, 106b, 107t, 108b

calculation of, 38, 39b, 91–93

complications of. See complications

compounding of, 89–94

indications for, 8–12, 19–34

initiation of, 101–102, 103t, 104t

monitoring during. See monitoring

recommendations

perioperative, 31

peripheral. See peripheral parenteral nutrition

product manufacturers, 74t, 80–81t, 84t, 94

schedule for, 160–161

toxicity of, 143, 144b

vs enteral nutrition, 12–13

parenteral nutrition associated liver disease (PNALD), 132–133, 133b, 134b, 135b, 136b

patient selection, 51–52, 167–168, 169f

“per day” basis, of formula calculation, 93

pericardial tamponade, 47b, 54b

perioperative parenteral nutrition support, 31

derentially inserted central catheters (PICCs), 38, 40, 43t, 45t, 48–49. See also catheters; venous access devices

care of, 49–51

placement of, 49

peripheral parenteral nutrition (PPN), 15, 29–30

and osmolarity, 90, 93

pharmacies/pharmacists, 87, 89–90, 91b, 151

phenylalanine, 70t, 71

phlebitis/thromophlebitis, 41

phosphate, 70t, 78, 121

phosphorus. 29b, 76, 77t, 107t, 137t, 140, 141, 142t, 178b
phylloquinone. See vitamin K (phylloquinone)
physical assessment, before initiating parenteral nutrition, 20, 21b
physician, role in home parenteral nutrition, 150
PICCs. See peripherally inserted central catheters (PICCs)
PN. See parenteral nutrition (PN)
PNALD. See parenteral nutrition associated liver disease (PNALD)
pneumothorax, 46b, 52b
port-pocket infection, 57
potassium, 70t, 77t, 107t, 121, 140, 178b
PPN. See peripheral parenteral nutrition (PPN)
product manufacturers, 62, 69, 69t, 70t, 72, 94, 140
proline, 70t
propofol, hypertriglyceridemia risk from, 111
protein, 5, 28, 69, 122b, 125b, 134b, 138
Pseudomonas infection, 59
pyridoxine. See vitamin B-6 (pyridoxine)
radiation enteritis, 32b, 152b
real-time content, of aluminum, 140
refeeding syndrome, 106b, 108b, 120–122, 120b, 122b, 153b
refrigeration, for parenteral nutrition solutions, 167
registered dietitian nutritionist (RDN), role in parenteral nutrition, 4–8, 150
registered nurse (RN), role in home parenteral nutrition, 150–151
reimbursement, for home parenteral nutrition, 154–157, 155–157b
renal disease/failure, 14–15, 72, 118b, 140
and vitamin supplementation, 82
renal formulas, 71–72
retinol. See vitamin A (retinol)
riboflavin. See vitamin B-2 (riboflavin)
RN. See registered nurse (RN), role in home parenteral nutrition

safflower oil, topical, 72, 75
SBS. See short bowel syndrome (SBS)
selenium, 82–83, 83t, 84t
self-monitoring, during home parenteral nutrition, 170, 172b. See also monitoring recommendations
self-sealing septum, 46
sepsis, 118b, 123, 124
serine, 70t
Serratia marcescens infection, 59
Short Bowel Foundation, 177
short bowel syndrome (SBS), 32b, 152b, 155b
skin antisepsis, 50, 59
sliding scale insulin (SSI) protocol, 162, 163t. See also insulin
Smoflipid (smof), 72–73, 74t, 133
social worker, role in home parenteral nutrition, 151
Society for Critical Care Medicine, 11–12
sodium, 29b, 70t, 77t, 107t, 114b, 122b, 178b
SSI protocol. See sliding scale insulin (SSI) protocol
Staphylococcus infection, 59
starvation, physiology of, 120–121. See also malnutrition
stearic acid, 74t
steatosis, 124, 135b
subclavian vein, 38–40, 41
sunflower oil, topical, 75
superior vena cava (SVC), catheter tip placement in, 36, 39–40, 41, 49, 56
SVC. See superior vena cava (SVC)
taurine, 70t
thiamin. See vitamin B-1 (thiamin)
threonine, 70t
thrombophlebitis. See phlebitis/thromophlebitis
thrombosis, 40, 41, 49, 56b
tissue plasminogen activator, 55
TNA. See total nutrient admixtures (TNA)
total nutrient admixtures (TNA), 61–62, 73, 76, 90, 91b, 94b, 119. See also 3-in-1 parenteral nutrition formula
toxicity, of parenteral nutrition, 143, 144b
trace elements, 82–85, 83t, 84t, 140, 178b
transhepatic veins, 39
translumbar veins, 39
transparent dressings, 50
transplanation, and parenteral nutrition risks, 136
Travasol solution, 69–70t
triglycerides, 29b, 72, 75, 103t, 104t, 106b, 111, 118, 119b
tryptophan, 70t, 71
tunneled catheters, 42, 43t, 44t. See also catheters
tyrosine, 71
ulcerative colitis, 14
ursodeoxycholic acid, 124
US Food and Drug Administration (FDA), 78, 88

valine, 70t, 71

vascular access devices (VADs). See also catheters
anatomical sites for, 36–37, 37f
care of, 174, 174–176b
complications of, 46–48b, 52, 52–84b, 55–56b, 179
for home parenteral nutrition, 159
patient education on, 51–52, 168
placement of, 40–41
selection of, 36, 150–151

venous thrombosis. See thrombosis
vitamin A (retinol), 79t, 80t, 137t
vitamin B-1 (thiamin), 79t, 80t, 82, 121, 122b, 142t
vitamin B-2 (riboflavin), 79t, 80t
vitamin B-3 (niacin), 79t
vitamin B-6 (pyridoxine), 79t, 80t
vitamin B-12 (cyanocobalamin), 79t, 81t
vitamin C (ascorbic acid), 79t, 80t, 82, 140, 142t
vitamin D (ergocalciferol), 78–79, 79t, 80t, 136, 137, 137t
vitamin E (dl-alpha-tocopherol acetate), 79t, 80t
vitamin K (phylloquinone), 78, 79t, 80t, 137, 140, 142t

weight monitoring, 102, 104t

zinc, 83–84, 83t, 84t, 139, 142t
Written and reviewed by parenteral nutrition experts, this fully updated and evidence-based guide can be used by the nutrition support team in hospitals, long-term care facilities, and home or hospice settings. Topics include:

- indications for parenteral nutrition;
- vascular access, delivery systems, and intravenous pumps;
- parenteral nutrients and formulations;
- initiation, advancement, and acute complications;
- metabolic complications of long-term parenteral nutrition; and
- parenteral nutrition in the home and alternate sites.

An expanded chapter on the Nutrition Care Process addresses nutrition assessment, diagnosis, intervention, and monitoring and evaluation as it applies to the delivery of parenteral nutrition. Appropriate for students to the advanced practitioner, this pocket guide is an indispensable resource.