“Research: Successful Approaches in Nutrition and Dietetics contains the collective knowledge of our field, with each chapter authored by distinguished nutrition and dietetics researchers. This newest edition will continue to serve as a reference and educational foundation for our profession.”

— Ashley Vargas, PhD, MPH, RDN, FAND, Health Scientist, Office of Disease Prevention, Office of the Director, National Institutes of Health; Chair, Academy of Nutrition and Dietetics Research Dietetic Practice Group, 2018–2019

For over 25 years, this highly respected resource has presented the evolving knowledge of the foremost research experts in the field of nutrition and dietetics. The fully revised fourth edition of Research: Successful Approaches in Nutrition and Dietetics addresses designing, executing, analyzing, and communicating modern nutrition research that is essential for today’s evidence-based practice. From formulating hypotheses, research questions, and study design to ethical research conduct, writing proposals, and securing funding, this reference builds a strong research foundation, making research accessible for all readers. Sections devoted to the key types of research and assessment methods used in the study of nutrition and dietetics offer in-depth coverage of new and different tools and methodologies, including:

- When and how to use qualitative research
- Observational and experimental research, including analytic nutrition epidemiology and guidelines for conducting clinical nutrition studies
- Integrative and translational research, including the value of systematic reviews and interdisciplinary research
- Evaluation and assessment methods, including survey research, dietary assessment methods, food composition analysis, appetite assessment, and more
- Research in expanding areas of practice—nutrigenomics, behavioral health, dietary supplements, foodservice management, community settings, integrative nutrition, and dietetics education.

Evaluation and application of research findings are also addressed in chapters on statistical analysis, presentation of research data, and bridging research results into practice.
Contents

List of Boxes, Tables, and Figures .. vii
Editors .. xiii
Contributors .. xv
Reviewers .. xvii
Foreword ... xix
Acknowledgments ... xxi
About the Fourth Edition ... xxiii

Section 1: An Introduction to Discovery Through Research in Nutrition and Dietetics

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advancing the Research Continuum</td>
<td>Linda Van Horn, PhD, RDN</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Building the Research Foundation: The Research Question and Study Design</td>
<td>Carol J. Boushey, PhD, MPH, RDN, and Jeffrey Harris, DrPH, MPH, RDN, LDN, FAND</td>
<td>8</td>
</tr>
</tbody>
</table>

Section 2: Establishing and Maintaining a Research Environment

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Conducting and Presenting Research Ethically</td>
<td>Rosa K. Hand, PhD, RDN, LD, FAND</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>How to Write Proposals and Obtain Funding</td>
<td>Dianne Neumark-Sztainer, PhD, MPH, RD, and Nicole Larson, PhD, MPH, RDN</td>
<td>53</td>
</tr>
</tbody>
</table>

Section 3: Descriptive Research

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Descriptive Epidemiologic Research</td>
<td>Maureen Brady Moran, MPH</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>Qualitative Research</td>
<td>Judith Beto, PhD, RDN</td>
<td>84</td>
</tr>
</tbody>
</table>
Section 4: Observational and Experimental Research

CHAPTER 7
Analytic Nutrition Epidemiology | Lyn M. Steffen, PhD, MPH, RDN, FAHA 102

CHAPTER 8
Guidelines for Developing and Implementing Clinical Nutrition Studies | Alison L. Steiber, PhD, RDN; Rosa K. Hand, PhD, RDN, LD, FAND; and Constantina Papoutsakis, PhD, RDN 126

CHAPTER 9
Nutrition Monitoring in the United States: Sources of Data and Their Uses | Sharon I. Kirkpatrick PhD, RD 153

Section 5: Integrative and Translational Research

CHAPTER 10
Systematic Reviews: Backbone of Evidence-Based Practice | Deepa Handu, PhD, RDN; Lisa Moloney, MS, RDN; Feon Cheng, PhD, MPH, RDN, CHTS-CP; and Mary Rozga, PhD, RDN 192

CHAPTER 11
Bridging Disciplinary Boundaries | Madeleine Sigman-Grant, PhD, RD, and Sharon M. Donovan, PhD, RD 217

Section 6: Evaluation and Assessment Methods in Research

CHAPTER 12
Survey Research Planning and Questionnaire Design | Jacqueline A. Vernarelli, PhD, and Barbara E. Millen, DrPH, RD, FADA 230

CHAPTER 13
Dietary Assessment Methods and Validation | Linda Van Horn, PhD, RDN 250

CHAPTER 14
Food Composition Data and Databases | Catherine M. Champagne, PhD, RDN, LDN, FTOS, FAHA FADA, FAND; Pamela R. Pehrsson, PhD; and David Haytowitz, MSc 271

CHAPTER 15
Using the Dietary Reference Intakes to Assess Intakes | Regan L. Bailey, PhD, MPH, RD; Connie Weaver, PhD; and Suzanne P. Murphy, PhD 294
CHAPTER 16
Biomarkers in Nutrition Research | Yasmin Mossavar-Rahmani, PhD, RD

CHAPTER 17
Research Methods in Appetite Assessment | James H. Hollis, PhD, BSc (Hons)

Section 7: Key Aspects of Research in Food, Nutrition, and Dietetics

CHAPTER 18
Outcomes Research and Economic Analysis | William Murphy, MS, RDN, and Rosa K. Hand, PhD, RDN, LD, FAND

CHAPTER 19
Research in Diet and Human Genetics | Marilyn C. Cornelis, PhD

CHAPTER 20
Behavior Change Theory–Based Dietary Research | Geoffrey W. Greene, PhD, RD, LDN; Colleen A. Redding, PhD; Miryam Yusufov, PhD; and Jade McNamara, PhD

CHAPTER 21
Research Methods for Dietary Supplementation Research | Cynthia Thomson PhD, RDN, and JoAnn E. Manson, MD, DrPH

CHAPTER 22
Research in Foodservice Management | Veronica McLymont, PhD, RD, CDN, and Lianne Russo, MS, RDN, CDN

CHAPTER 23
Dietetics Education Research | Mary B. Gregoire, PhD, RD, FADA, FAND, and Kevin Sauer, PhD, RDN, LD, FAND

Section 8: Application of Statistical Analysis in Nutrition and Dietetics Research

CHAPTER 24
Estimating Sample Size | Jeffrey Harris, DrPH, MPH, RDN, LDN, FAND, and Carol J. Boushey, PhD, MPH, RDN

CHAPTER 25
Fundamentals of Statistical Applications | Philip Gleason, PhD; Mary C. Naglak, PhD, RD; and Carol Koprowski, PhD, RDN
Section 9: Presentation of Research Data

CHAPTER 26
Techniques and Approaches for Presenting Research Findings | Joanne Kouba, PhD, RDN 512

CHAPTER 27
Illustrating the Results of Research | Shortie McKinney, PhD, RD, FADA, and Kelsey Mangano, PhD, RD 541

CHAPTER 28
Research Publications: Perspectives of the Writer, Reviewer, and Reader | Jeffrey Harris, DrPH, MPH, RDN, LDN, FAND 558

Section 10: Applications of Research to Practice

CHAPTER 29
Bridging Research into Practice | Judith A. Gilbride, PhD, RDN, FAND, and Laura D. Byham-Gray, PhD, RDN, FNKF 570

CHAPTER 30
Community-Based Research with a Focus on Diet | Linda Snetselaar, PhD, RDN, LD, FAND; Angela Odoms-Young, PhD; and Maria O. Scott, MPH 592

Index 607
List of Boxes, Tables, and Figures

Boxes

- **Box 3.1** Information Requested in an Institutional Review Board Application
 (Page 40)
- **Box 3.2** Components of an Informed Consent Form
 (Page 40)
- **Box 3.3** The 18 Patient Identifiers That Must Be Removed to Meet the Health Insurance Portability and Accountability Act Safe Harbor Method
 (Page 42)
- **Box 3.4** Guidelines for Scientists in Communicating Emerging Science on Nutrition, Food Safety and Health
 (Page 48)
- **Box 4.1** Review Criteria for National Institutes of Health Proposals
 (Page 57)
- **Box 4.2** Typical Budget Items for a Grant Proposal to Develop, Implement, and Evaluate a Community-Based Nutrition Intervention Program
 (Page 66)
- **Box 5.1** Calculation of Cumulative Incidence: Colon Cancer Cumulative Incidence Expressed as Risk of Disease
 (Page 76)
- **Box 5.2** Key Epidemiologic Calculation Terms
 (Page 77)
- **Box 6.1** General Similarities Between Qualitative and Quantitative Research
 (Page 86)
- **Box 6.2** Contrasting Characteristics of Qualitative and Quantitative Research
 (Page 86)
- **Box 6.3** Examples of Qualitative Research Approach
 (Page 87)
- **Box 6.4** Selected Qualitative Research Topic Areas in Nutrition
 (Page 89)
- **Box 6.5** Examples of Qualitative Research Designs
 (Page 90)
- **Box 6.6** Common Qualitative Research Sampling Methods
 (Page 91)
- **Box 6.7** Selected Software for Qualitative Data Analysis
 (Page 95)
- **Box 7.1** Measures of Association
 (Page 104)
- **Box 7.2** Bradford Hill Criteria for Causation
 (Page 105)
- **Box 8.1** Resources for Conducting Clinical Nutrition Research Studies
 (Page 128)
- **Box 8.2** Recommended Quality Improvement Procedures in a Clinical Nutrition Study
 (Page 149)
- **Box 9.1** Nutrition Monitoring Data Support Policy Making and Research in the United States in Different Ways
 (Page 155)
- **Box 9.2** Healthy People 2020 Objectives for Improving Health: An Example of the Use of Nutrition Monitoring Data for Assessing Progress on Public Health Goals
 (Page 156)
- **Box 9.3** Centers for Disease Control and Prevention (CDC) Growth Charts: An Example of the Use of Nutrition Monitoring Data to Inform Reference Standards Related to Nutritional Status
 (Page 168)
- **Box 9.4** Nutrition Monitoring Data in Action: Mandatory Folic Acid Fortification and Neural Tube Defects
 (Page 170)
- **Box 9.5** Overview of Key Food Composition and Supplement Databases Developed and Maintained by the US Department of Agriculture and Its Partners
 (Page 171)
- **Box 9.6** Selected Sources of Federal Information on Nutrition Research, Surveys, and Data Sets
 (Page 176)
- **Box 10.1** Questions from the Quality Criteria Checklist: Primary (Original) Research
 (Page 203)
- **Box 10.2** Roles in Academy of Nutrition and Dietetics Evidence Analysis
 (Page 211)
- **Box 10.3** Resources for Systematic Reviews and Guideline Development
 (Page 213)
- **Box 11.1** Elements for Successful Multidisciplinary Research
 (Page 224)
- **Box 11.2** Example of Data Cleaning
 (Page 236)
- **Box 11.3** Key Terms in Sampling Methodology
 (Page 237)
- **Box 11.4** Closed-Ended vs Open-Ended Questions
 (Page 243)
- **Box 11.5** Question Criteria for Response Categories
 (Page 243)
- **Box 11.6** Example of Order of Food Description Terms in a Database
 (Page 283)
- **Box 11.7** Examples of Food Name Synonyms
 (Page 283)
- **Box 15.1** Dietary Reference Intake Definitions
 (Page 295)
- **Box 16.1** Examples of Short-, Medium-, and Long-Term Biomarkers
 (Page 314)
- **Box 16.2** Definitions of Systematic and Random Error
 (Page 321)
- **Box 17.1** Applications of Appetite Research Methods for Weight Management
 (Page 332)
Box 17.2 Internal vs External Validity
Box 17.3 Study Design Terminology
Box 18.1 Outcomes Examples by Type
Box 18.2 Comparison of Efficacy vs Effectiveness Research
Box 18.3 The Nine Dimensions of the Pragmatic–Explanatory Continuum Indicator Summary 2 (PRECIS-2) Instrument and the Defining Questions for Each
Box 18.4 Outcomes and Effectiveness Research: Planning and Conducting a Study
Box 18.5 Evidence Analysis Library Conclusion Statements Related to the Cost-Effectiveness of Medical Nutrition Therapy
Box 18.6 Quality-Adjusted Life Years
Box 18.7 Perspectives for Economic Analysis
Box 18.8 Types of Costs Used in Economic Analysis
Box 20.1 Effect Size
Box 20.2 Example of a Social Cognitive Theory-Based Intervention
Box 20.3 Example of Transtheoretical Model-Based Intervention and Randomized Controlled Trial
Box 21.1 Key Web-Based Government Information for Guiding the Development of Quality Research Projects on Dietary Supplementation
Box 21.2 Additional Dietary Supplementation: Informational Resources
Box 22.1 Data Collection Techniques for Foodservice Research
Box 23.1 Definitions and Examples of Observational and Experimental Studies in Nutrition and Dietetics Education
Box 23.2 Types of Methods Used in Explanatory Research
Box 24.1 Sample Size Calculation Software and Websites
Box 25.1 Hypothesis Testing and Criminal Trials
Box 25.2 Clinical Study Example Used to Illustrate Statistical Methods: Remission of Type 2 Diabetes in Patients Undergoing Bariatric Surgery
Box 25.3 Examining the Relationship Between Bariatric Surgery and Diabetes Remission
Box 25.4 Comparing Mean Hemoglobin A1c Levels at Different Time Periods by Type of Surgery
Box 25.5 Constructing a Linear Regression Equation to Predict Hemoglobin A1c Levels 12 Months After Bariatric Surgery
Box 26.1 Practical Suggestions for Conference Poster Presentations
Box 26.2 Sample Slide Organization for Research Presentation
Box 26.3 Sample Roundtable Discussion Questions
Box 26.4 Information to Include in a Webinar Introductory Script
Box 27.1 Tips for Creating Research Data Tables That Are Easy to Read and Understand
Box 27.2 Elementary Tasks in Graphical Perception in Decreasing Order of Accuracy
Box 28.1 Signs of a Predatory Journal
Box 28.2 Tips for Improving Communication Between Author and Editor
Box 28.3 Questions Reviewers Should Ask When Reviewing a Manuscript
Box 28.4 Questions a Reader Should Ask to Critically Evaluate a Research Article
Box 29.1 Practical Tips for Keeping Up with the Research Literature
Box 29.2 Self-Assessment Questions for Determining Potential for Increasing Research Involvement in Nutrition and Dietetics Practice
Box 29.3 Ways to Disseminate Practice-Based Research
Box 30.1 Institute of Medicine Classification System Showing Where Research Sits on the Translational Research Spectrum
Box 30.2 Qualitative Research Strategies
Box 30.3 Parental Consent for Children Participating in Research

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1 Resources for Training in Human Subjects Protection</td>
<td>38</td>
</tr>
<tr>
<td>Table 4.1 Types of Grant Programs of the National Institutes of Health</td>
<td>56</td>
</tr>
<tr>
<td>Table 4.2 Impact Evaluation Measures: New Moves</td>
<td>61</td>
</tr>
<tr>
<td>Table 7.1 Advantages and Disadvantages of Observational Study Designs</td>
<td>113</td>
</tr>
<tr>
<td>Table 9.1 Federal Nutrition Monitoring Surveys and Surveillance Activities</td>
<td>158</td>
</tr>
<tr>
<td>Table 10.1 Study Design, Distinguishing Characteristics, and Important Quality Considerations</td>
<td>203</td>
</tr>
<tr>
<td>Table 10.2 Evidence Summary Table (Summary of Findings Table)</td>
<td>205</td>
</tr>
<tr>
<td>Table 12.1 Statistical Tests to Compare Groups</td>
<td>247</td>
</tr>
</tbody>
</table>
Table 14.1 History of Special Interest Databases Released by the US Department of Agriculture

Table 15.1 Nutrients That Have Special Considerations When Applying the Dietary Reference Intake Framework

Table 15.2 Evaluation of a 74-Year-Old Man’s Diet Based on Usual Intake from Food and Supplements

Table 16.1 Biomarkers for Dietary Assessment of Macronutrients

Table 16.2 Blood Concentration Biomarkers Useful in Assessing Nutrition or Monitoring Dietary Intakes

Table 16.3 Biochemical Indicators Useful as Biomarkers of Plant-Based Diets

Table 18.1 Assessing Nutrition-Related Surrogate Outcomes

Table 18.2 Analytic Methods Used in Economic Analysis

Table 19.1 Genome-Wide Association Studies of Diet-Related Traits

Table 19.2 Examples of Known and Hypothesized Gene-Diet Interactions

Table 19.3 Examples of Randomized Control Trials Assessing the Impact of Genotype-Based Risk Estimates on Risk-Reducing Dietary Behaviors

Table 20.1 Similarities Across Key Constructs by Behavior Change Theory

Table 21.1 Dietary Supplement Label Claims and Relevance to Research

Table 21.2 The 2015–2020 National Institutes of Health–Funded Centers for Advancing Research on Botanical and Other Natural Products (CARBON) Program Centers

Table 21.3 Biomarkers of Nutrient or Phytochemical Exposure Available for Use in Dietary Supplement Intervention Trials

Table 21.4 Possible Outcome Biomarkers for Use in Dietary Supplementation Research

Table 22.1 Foodservice Management Research Designs

Table 24.1 Possible Outcomes When Drawing Conclusions from Statistical Results

Table 24.2 Standard Normal Distribution Multipliers (Z values) for Values of α and β

Table 25.1 Parametric Statistical Tests and Their Nonparametric Counterparts

Table 25.2 Prevalence of Obesity Among Adults in the United States

Table 25.3 Measures of Central Tendency and Dispersion for Prestudy Body Mass Index

Table 25.4 Suggested Statistical Methods for Evaluating Differences Between Samples or Groups

Table 27.1 Categories of Information Necessary for a Complete Representation of Data in Tables

Figures

Figure 2.1 Basic cross-sectional study design (or survey) for determining prevalence rates of a health outcome (eg, hypertension) or a behavioral outcome (eg, fruit and vegetable consumption)

Figure 2.2 Basic cross-sectional study design (or survey) for examining a relationship between exposure and outcome

Figure 2.3 Basic randomized controlled trial study design

Figure 2.4 Basic study design for the crossover randomized controlled trial where participants are represented in both treatment and control (placebo) arms

Figure 2.5 Example of a 2p factorial design in which two factors are at two levels each.

Figure 2.6 Basic prospective cohort study design

Figure 2.7 Basic case-control study design involves ascertaining cases after onset of disease and assessing exposure via recall of status before the onset of disease

Figure 3.1 Institutional review board application and approval process

Figure 4.1 Theoretical framework example from the Eating and Activity in Teens (EAT) study of changes in young people’s eating and activity behaviors from 2010 through 2018

Figure 4.2 Timeline example

Figure 5.1 Schematic description of the screening test indexes sensitivity and specificity and their calculation

Figure 5.2 Schematic description of the predictive values of a screening test

Figure 5.3 Comparison of positive predictive values in populations with differing prevalence of disease

Figure 7.1 Relative risk

Figure 7.2 Comparison of predictive values

Figure 8.1 Examples of hypotheses and null statements
Figure 8.2 Parallel-design randomized controlled clinical trial
Figure 8.3 Crossover experimental trial design
Figure 8.4 Factorial experimental trial design
Figure 8.5 Cluster randomized experimental trial design
Figure 8.6 Stepped-wedge experimental trial design
Figure 8.7 Sample template for the Consolidated Standards of Reporting Trials (CONSORT) showing the flow of participants through each stage of a randomized trial
Figure 8.8 Nutrition intervention studies of varying control
Figure 10.1 Example of an analytic framework to help develop questions for systematic review
Figure 10.2 Steps to identify the best and most relevant research
Figure 10.3 Example Search inclusion and exclusion criteria
Figure 10.4 Snapshot of the Academy of Nutrition and Dietetics Data Extraction Tool
Figure 10.5 Sample evidence summary
Figure 10.6 Sample conclusion statement
Figure 10.7 Criteria and definitions for grading the strength of the evidence for an Evidence Analysis Library conclusion statement
Figure 10.8 Sample recommendation statement
Figure 10.9 Rating scheme for the strength of the recommendations, Academy of Nutrition and Dietetics
Figure 11.1 Illustration of the parable of the six blind men and the elephant
Figure 11.2 Comparison of multidisciplinary, interdisciplinary, and transdisciplinary research
Figure 11.3 Schema depicting multiple disciplines for studying determinants of eating and physical activity
Figure 12.1 An ecological model of diet and health outcomes with dietary patterns
Figure 12.2 Steps for design and implementation of a survey
Figure 12.3 Sample statements and questions on an ordinal scale
Figure 12.4 Reliability vs validity
Figure 13.1 National Cancer Institute Diet Assessment Primer Roadmap
Figure 13.2 National Cancer Institute comparison of dietary assessment instruments
Figure 14.1 Screenshot of the US Department of Agriculture’s Branded Food Products Database, a typical food composition database
Figure 14.2 Sodium variability among brands of kosher dill pickles available in the United States
Figure 15.1 Relationship among Dietary Reference Intakes
Figure 15.2 Example of a requirement distribution: magnesium requirements for women aged 19 to 30 years
Figure 15.3 Hypothetical nutrient distribution with and without usual intake methods applied
Figure 16.1 Fraction of biomarker (doubly labeled water) variance explained by dietary self-report in energy and participant characteristics
Figure 17.1 Example of a visual analogue scale
Figure 17.2 Example of a category scale
Figure 18.1 An evidence-based practice research cycle including outcomes research
Figure 18.2 Validation process for surrogate outcome
Figure 18.3 Relationships among diseases, outcomes, interventions, and valid and invalid surrogate end points
Figure 18.4 Chain of outcomes of nutrition care
Figure 18.5 Chain of outcomes resulting from weight management program (12-month period)
Figure 18.6 Spectrum of internal and external validity by study design
Figure 19.1 DNA and a diagram of a typical human structural gene
Figure 20.1 Flow Diagram of interventions from concept to evaluation
Figure 20.2 The stages of change spiral from the transtheoretical model
Figure 21.1 Key approaches to dietary supplementation scientific investigation
Figure 21.2 The scientific process: dietary supplement research model for a randomized controlled trial
Figure 21.3 Sample dietary supplement use data collection form
Figure 22.1 Matrix displaying research areas in foodservice management
Figure 22.2 Future directions in foodservice management research
Figure 25.1 Classification of types of variables
Figure 25.2 Example of serial and replicate measures
Figure 25.3 Example of transforming data (folate intake) used in statistical modeling of usual dietary intake

Figure 25.4 Example of a statistical outlier illustrated via scatterplot

Figure 25.5 Example of how a histogram can be used to summarize a single variable such as type of diabetes treatment (diet, oral medication, insulin)

Figure 25.6 Histogram showing the distribution of diabetes remission among four different types of bariatric surgery

Figure 25.7 Comparison of standard error and standard deviation

Figure 25.8 Scatterplot of prestudy weight and height

Figure 26.1 Example of a structured abstract in a journal

Figure 26.2 Techniques for improving the presentation of research data in table format

Figure 26.3 Example of an organizational publication

Figure 26.4 Example of a poster presentation

Figure 26.5 Example of an abstract in which the authors have been blinded for a poster presentation at a professional conference

Figure 27.1 Examples of original and improved methods of depicting the same data

Figure 27.2 Example of how the information presented in a data table should complement but not duplicate the information presented in the text of the research article of which it is a part

Figure 27.3 Rate ratios for death from all causes in white men (n = 57,073) and women (n = 240,158) by World Health Organization body mass index categories (underweight = 18.4 or less; normal range = 18.5 to 24.9; preobese = 25.0 to 29.9; class I obese = 30.0 to 34.9; class II obese = 35.0 to 39.9; class III obese = 40+)

Figure 27.4 Inappropriate graph overemphasizes the importance of data

Figure 27.5 Stacked bar graph (A) compared with dot chart with grouping (B)

Figure 27.6 Curve-difference graphs

Figure 27.7 Distribution maps

Figure 27.8 Example of a flow chart

Figure 30.1 The translational science spectrum

Figure 30.2 Sample observational study designs and potential findings

Figure 30.3 Sample experimental/quasi-experimental designs and potential findings

Figure 30.4 Sample screening form for participants in a study on blood pressure management

Figure 30.5 Sample community-based study design

Figure 30.6 Staggered recruitment and intervention strategy

Figure 30.7 Study status update form
Editors

Linda Van Horn, PhD, RDN, earned her bachelor's degree from Purdue University in Nutrition and Dietetics, her master's degree from the University of Pittsburgh in Exercise Physiology, and her doctorate from the University of Illinois at Chicago in Public Health. She completed her dietetic internship at Indiana University in Indianapolis. She began her career as a hospital dietitian at the University of Illinois Hospitals and Clinics and eventually joined the faculty at Northwestern University Feinberg School of Medicine, where she is currently a tenured professor in the Department of Preventive Medicine and Associate Dean for Faculty Development. She served as Editor-in-Chief of the *Journal of the Academy of Nutrition and Dietetics* for the ten-year term limit and chaired the 2010 US Dietary Guidelines Advisory Committee.

Judith Beto, PhD, RDN, earned her bachelor's degree from Dominican University in Nutrition and Dietetics, her master's degree in Health Professions Education from the University of Illinois at Chicago, and her doctorate from the University of Chicago in Measurement, Evaluation, and Statistical Analysis. She completed her dietetic internship at the Hines Veterans Administration Hospital where she continued as a renal dietitian. She was the department chair and tenured professor of Nutrition Sciences at Dominican University until 2012. She still collaborates as a Research Associate in Nephrology and Hypertension at Loyola University Chicago, Health Sciences Division. She serves as a Research Editor for the *Journal of the Academy of Nutrition and Dietetics* and as an elected public member of the National Board of Podiatric Medical Examiners.
Contributors

Regan L. Bailey, PhD, MPH, RD
Associate Professor, Purdue University
West Lafayette, IN

Judith Beto, PhD, RDN
Research Associate, Loyola University Healthcare System
Maywood, IL

Carol J. Boushey, PhD, MPH, RDN
Associate Research Professor, Epidemiology Program, University of Hawaii Cancer Center
Honolulu, HI

Maureen Brady Moran, MPH
Assistant Professor of Preventive Medicine, Northwestern University, Feinberg School of Medicine,
Chicago, IL

Laura D. Byham-Gray, PhD, RDN, FNSK
Professor and Vice Chair of Research, Rutgers University, Department of Clinical and Preventive Nutrition Sciences
New Brunswick, NJ

Catherine M. Champagne PhD, RDN, LDN, FTOS, FAHA, FAND
Professor and Chief, Nutritional Epidemiology/Dietary Assessment & Nutrition Counseling, Pennington Biomedical Research Center, Part of Louisiana State University
Baton Rouge, LA

Feon Cheng, PhD, MPH, RDN, CHTS-CP
Nutrition Researcher, Academy of Nutrition and Dietetics
Los Angeles, CA

Marilyn C. Cornelis, PhD
Assistant Professor, Northwestern University Feinberg School of Medicine
Chicago, IL

Sharon M. Donovan, PhD, RD
Professor and Melissa M. Noel Endowed Chair in Diet and Health, University of Illinois at Urbana-Champaign
Urbana, IL

Joanne Kouba, PhD, RDN
Associate Professor, Loyola University of Chicago, Health Science Campus
Maywood, IL

Nicole Larson, PhD, MPH, RDN
Senior Research Associate, University of Minnesota School of Public Health
Minneapolis, MN

Geoffrey W. Greene, PhD, RD, LDN
Professor and Dietetic Internship Director, University of Rhode Island
Kingston, RI

Mary B. Gregoire, PhD, RD, FADA, FAND
Executive Director, Accreditation Council for Education in Nutrition and Dietetics
Chicago, IL

Rosa K. Hand, PhD, RDN, LD, FAND
Instructor and Director, Combined Dietetic Internship/Master's Degree Program, Case Western Reserve University
Cleveland, OH

Deepa Handu, PhD, RDN
Senior Scientific Director, Evidence Analysis Center, Academy of Nutrition and Dietetics
Chicago, IL

Jeffrey Harris, DrPH, MPH, RDN, LDN, FAND
Professor, Department of Nutrition, West Chester University of Pennsylvania
West Chester, PA

David Haytowitz, MSc
Nutritionist, USDA-ARS-BHNRC Nutrient Data Laboratory
Beltsville, MD

James H. Hollis, PhD, BSc(Hons), Associate Professor Food Science and Human Nutrition, Iowa State University
Ames, IA

Sharon I. Kirkpatrick, PhD, RD
Associate Professor, University of Waterloo
Waterloo, ON, Canada

Carol Koprowski, PhD, RDN
Clinical Assistant Professor of Preventive Medicine, Keck School of Medicine at the University of Southern California
Los Angeles, CA

Joanne Kouba, PhD, RDN
Associate Professor, Loyola University of Chicago, Health Science Campus
Maywood, IL

Philip Gleason, PhD
Senior Fellow, Mathematica Policy Research
Geneva, NY
JoAnn E. Manson, MD, DrPH
Chief, Division of Preventive Medicine, Brigham and Women's Hospital, and Professor of Medicine and the Michael and Lee Bell Professor of Women's Health, Harvard Medical School
Boston, MA
Kelsey Mangano, PhD, RD
Assistant Professor, Zuckerberg College of Health Sciences, University of Massachusetts Lowell
Lowell, MA
Shortie McKinney, PhD, RD, FADA
Dean, Zuckerberg College of Health Sciences, University of Massachusetts Lowell
Lowell, MA
Veronica Mc Lynmont, PhD, RD, CDN
Director, Food and Nutrition Services, Memorial Sloan Kettering Cancer Center
New York, NY
Jade McNamara, PhD
Assistant Professor of Human Nutrition, University of Maine
Orono, ME
Barbara Millen, DrPH, RD, FADA
President of Millennium Prevention, Inc. and Chairman of Boston Nutrition Foundation, Inc
Boston, MA
Lisa Moloney, MS, RDN
Nutrition Researcher, Academy of Nutrition and Dietetics
Chicago, IL
Yasmin Mossavar-Rahmani, PhD, RD
Associate Professor, Department of Epidemiology and Population Health, Albert Einstein College of Medicine,
Bronx, NY
Suzanne P. Murphy, PhD
Professor Emeritus, University of Hawaii Cancer Center
Honolulu, HI
William Murphy, MS, RDN
Chief Technology Officer, 3 Data, Inc
Austin, TX
Mary C. Naglak, PhD, RD
Clinical Research Director, Abington-Jefferson Health Memorial Hospital
Abington, PA
Dianne Neumark-Sztainer, PhD, MPH, RD
Mayo Professor and Division Head, Division of Epidemiology and Community Health, School of Public Health, University of Minnesota
Minneapolis, MN
Angela Odoms-Young, PhD
Associate Professor, University of Illinois at Chicago
Chicago, IL
Constantina Papoutsakis, PhD, RDN
Senior Director, Nutrition and Dietetics Data Science Center, Academy of Nutrition and Dietetics
Chicago, IL
Pamela R. Pehrsson, PhD
Research Leader, USDA-ARS-BHNRC Nutrient Data Laboratory
Beltsville, MD
Colleen A. Redding, PhD
Research Professor, University of Rhode Island
Kingston, RI
Mary Rozga, PhD, RDN
Nutrition Researcher, Academy of Nutrition and Dietetics
Chicago, IL
Lianne Russo, MS, RDN, CDN
Clinical Dietician and Nutritionist, Memorial Sloan Kettering Cancer Center
New York, NY
Kevin Sauer, PhD, RDN, LD, FAND
Associate Professor, Kansas State University
Manhattan, KS
Maria O. Scott, MPH
Academic/Scientific Editorial Manager, University of Iowa College of Public Health
Iowa City, IA
Madeleine Sigman-Grant, PhD, RD
Professor Emerita, University of Nevada, Reno
Las Vegas, NV
Linda Snetselaar, PhD, RDN, LD, FAND
Professor in Epidemiology, College of Public Health, University of Iowa
Iowa City, IA
Lyn M. Steffen, PhD, MPH, RDN, FAHA
Associate Professor of Epidemiology, University of Minnesota School of Public Health
Minneapolis, MN
Alison L. Steiber, PhD, RDN
Chief Scientific Officer, Research, International, and Scientific Affairs, Academy of Nutrition and Dietetics
Chicago, IL
Cynthia Thomson, PhD, RDN
Professor, Health Promotion Sciences, and Director, Canyon Ranch Center for Prevention & Health Promotion, Mel & Enid Zuckerman College of Public Health, University of Arizona
Tucson, AZ
Linda Van Horn, PhD, RDN
Professor, Preventive Medicine and Chief, Nutrition Division, Northwestern University
Chicago, IL
Jacqueline A. Vernarelli, PhD
Assistant Professor of Public Health, Sacred Heart University
Fairfield, CT
Connie Weaver, PhD
Distinguished Professor, Nutrition Science, Purdue University
West Lafayette, IN
Miryam Yusuf, PhD
Research Fellow, Dana-Farber Cancer Institute, Harvard Medical School
Boston, MA
Reviewers

Melinda Anderson, PhD, RDN, LDN
DPD Director, School of Human Ecology, Tennessee Technological University
Cookeville, TN

Shanna Beth Bernstein, MPH, RD, CDE
Metabolic Research Dietitian, National Institutes of Health, Clinical Center
Bethesda, MD

Catherine M. Champagne, PhD, RDN, LDN, FTOS, FAHA, FADA, FAND
Professor and Chief, Nutritional Epidemiology/Dietary Assessment & Nutrition Counseling
Pennington Biomedical Research Center, Louisiana State University
Baton Rouge, LA

Natasha Chong Cole, PhD, MPH, RD
Postdoctoral Research Fellow
Baylor College of Medicine/Children’s Nutrition Research Center
Houston, TX

Brenda M. Davy, PhD, RD
Professor, Department of Human Nutrition, Foods and Exercise,
Virginia Polytechnic Institute and State University
Blacksburg, VA

Phillip Gleason, PhD
Senior Fellow, Mathematica Policy Research
Geneva, NY

Amanda Goldman, MS, RD, LD, FAND
System Director of Quality and Wellness; Director of Diabetes and Nutrition Care, Catholic Health Initiatives
Lexington, KY

Rosa K. Hand, PhD, RDN, LD, FAND
Instructor and Director, Combined Dietetic Internship/Master’s Degree Program, Case Western Reserve University
Cleveland, OH

Kristen Heitman, MS, RDN, LD
Clinical Research Dietitian,
The Ohio State University Wexner Medical Center
Columbus, OH

Carrie King, PhD, RDN, LD, CDE
Professor, Dietetics and Nutrition, University of Alaska Anchorage
Anchorage, AK

Nicole M. Moore, MS, RDN, LD
Assistant Professor, Augusta University
Augusta, GA

Mary Rozga, PhD, RDN
Nutrition Researcher, Academy of Nutrition and Dietetics
Chicago, IL

Shey Schnell, MHA, RD
Director of Food and Nutrition Services
The University of Vermont Health Network-Champlain Valley Physicians Hospital
Plattsburgh, NY

Kim S. Stote, PhD, MPH, RDN
Associate Dean, Health Professions State University of New York,
Empire State College
Albany, NY

Ashley Vargas, PhD, MPH, RDN, FAND
Health Scientist, Office of Disease Prevention, Office of the Director, National Institutes of Health
North Bethesda, MD
Foreword

Research: Successful Approaches in Nutrition and Dietetics, now in its fourth edition, remains a touchstone for all nutrition and dietetics researchers. This text contains the collective knowledge of our field, with each chapter authored by a distinguished nutrition and dietetics researcher. This newest edition will continue to serve as a reference and educational foundation for our profession.

While the scientific method underpinning research has not changed in hundreds of years, the complexity of our research questions and research tools have increased appreciably. Professors Van Horn and Beto do an excellent job orienting readers to the full-spectrum of nutrition and dietetics research throughout this text, including clear indications of pros and cons for different tools and methodological approaches. Chapters 1 through 4 orient the reader, walk through the scientific method, describe how to obtain monetary support for research, and explain the ethical responsibility of researchers, respectively. The remaining chapters largely dive deeper into the array of different approaches, methods, and tools used in nutrition and dietetic research. This format easily allows the reader to simply choose topics of interest or to read through all topics for a more global understanding.

In 2017, the Academy of Nutrition and Dietetics celebrated its centennial, and, on behalf of the Research Dietetic Practice Group, I am beyond pleased to see the prominence of research within the Academy of Nutrition and Dietetics strategic plan. This is especially vital right now because research is more complex than ever and is being communicated to the public in smaller and smaller sound bites. Indeed, the Academy of Nutrition and Dietetics designated research as the first of four strategies to fulfill their mission to “Accelerate improvements in global health and well-being through food and nutrition.” For over 25 years the Academy of Nutrition and Dietetics has committed to publishing this text, which demonstrates the long-standing dedication of the Academy of Nutrition and Dietetics, and its membership, to quality research.

Ashley J. Vargas, PhD, MPH, RDN, FAND
Health Scientist, Office of Disease Prevention, Office of the Director, National Institutes of Health; Chair, Academy of Nutrition and Dietetics Research Dietetic Practice Group, 2018–2019
We are grateful to each of our talented authors. Their expertise is evident in these chapters, which provide the most current and credible information available in their respective areas of concentration. We highly respect these individuals for their hard work and creativity in presenting complex concepts in new and novel ways. We want to further give our appreciation to past authors whose contributions in earlier editions modelled certain topic areas.

We sincerely thank the Academy of Nutrition and Dietetics for supporting the development of this new edition. Specifically, the Publications, Resources, and Products team is recognized for its commitment to excellence, ongoing involvement, and dedication. Without them, this book could not have been produced.

We also wish to remember our former colleague and past editor of the Journal of the Academy of Nutrition and Dietetics, Elaine Monsen, PhD, RD, whose initiative launched the first edition of this book. Her commitment to teaching and training nutrition researchers has inspired countless investigators to take the tools and tips provided to design, implement, and publish remarkable findings and new discoveries.

Finally, we thank you, the readers, for your interest, scientific curiosity, and ambition. We encourage each of you to discover “successful approaches” to developing high impact nutrition research of your own!

Linda Van Horn, PhD, RDN
Judith Beto, PhD, RDN
About the Fourth Edition

The fourth edition of Research: Successful Approaches in Nutrition and Dietetics is a timely and comprehensive update on designing, conducting, and evaluating nutrition research. This text strategically targets nutrition students, their professors, and practitioners who seek a deeper understanding of the evidence base that forms nutrition policy and practical applications. There is an emphasis on the modern integration of nutrition science, epidemiology, clinical translational relevance and food-based practices. Advances in biostatistical analyses, biological mechanisms, and newly emerging biomarkers are encompasses throughout.

The book’s ten sections capture the excitement of research discovery, the importance of establishing a supportive research environment, and details specific to conducting observational, integrative, and translational research in the modern era.

Section 1 follows in the footsteps of the previous edition, laying a general foundation for the importance of discovery through research. Examples have been updated to give readers a glimpse of current research models to illustrate the main points.

Section 2 brings to the reader the most up-to-date information on advancing science through ethical research. Detailed information on writing proposals has been revised to feature the most current resources in grant writing and proposal funding resources.

Section 3 explores, in depth, the unique attributes of descriptive research with a new focus on efficiency in data collection.

Section 4 has been expanded to introduce the topic of consistency in study findings and includes new figures and illustrations to elaborate on clinical nutrition studies. Chapter 9 has been augmented to offer the latest in nutrition monitoring.

Section 5 includes a brand new chapter on bridging disciplinary boundaries and working on teams with members from varied backgrounds.

Section 6 incorporates key components relevant to evaluation and assessment methods in research, ranging from surveys to assessment methodology, as well as the importance of the food composition databases and dietary reference intakes that are essential to all aspects of nutrition research. A detailed and up-to-date review of existing biomarkers and how to apply them is included, as well as a specific focus on research involving appetite assessment.

Section 7 includes six chapters that are fundamental to the food, nutrition, and dietetics arena. New to this section is the subject of diet and human genetics, which is rapidly evolving. This topic is an essential component of understanding nutrition research in the modern era.

Section 8 concentrates on statistical applications that are vital to nutrition research and an invaluable component of understanding as well as writing nutrition research papers that merit publication in high impact journals.

Section 9 further describes best approaches to illustrate, evaluate, and integrate nutrition research data within the development of subsequent studies and their interpretation.

Finally, Section 10 brings it all together in the process of applying research in practice. The importance of community-based research in implementing public health benefits is the new culminating chapter to further emphasize applied-side nutrition and dietetics.

Authors who have contributed their time and talents to the fourth edition are uniquely qualified to address each topic, and their individual areas of expertise are well recognized and respected in the published literature. This text aims to enhance, expand, and energize readers to embrace the excitement of nutrition research, ignite new ideas and approaches, and achieve a better understanding of the importance of diet and nutrition in health throughout the life course.
SECTION 1

An Introduction to Discovery Through Research in Nutrition and Dietetics
Chapter 1
Advancing the Research Continuum
Forces for Research
Advancing Your Own Research

Chapter 2
Building the Research Foundation: The Research Question and Study Design
Designing a Research Study
Descriptive Research Designs
Experimental Study Designs
(Randomized-Trials)
Prospective (Cohort, Follow-Up) Studies
Case-Control Studies
LEARNING OBJECTIVES

1. Introduce the overall premise of this book.
2. Highlight key topics and research elements addressed.
3. Encourage readers, whether novice or experienced, to apply these principles and strategies to their own research as they move forward with their careers.

Nutrition research is fundamental to the evidence-based practice of nutrition and dietetics. Well-designed, carefully executed, quality-controlled studies offer insights and breakthroughs that drive the field forward. Research fosters objective measurement of complex environments and demands rigorous evaluation of procedures, treatments and outcomes. Through research, associations can be identified, hypotheses tested, programs compared, and protocols validated. Research documents practice, monitors approaches, ensures credibility, and assesses cost-effectiveness. The strength of a discipline, whether in health sciences or management, is characterized by the quality and quantity of evidence in its research base. Strong and consistent research is essential to a vibrant profession, pending active involvement of professionals in keeping abreast of the dynamic findings.
FORCES FOR RESEARCH

Monsen\(^1\) identified driving forces that continue to influence nutrition research today. These include recognizing unexpected findings, extending existing data, posing point-counterpoint comparisons, and responding to socioeconomic, political, and behavioral influences of a culturally diverse environment. Included in modern applications of research are the numerous influences conferred by social media and the rapid-fire communication of results that can undermine careful consideration of unintended consequences.

Recognizing the Unexpected

An exciting by-product of a research study is sometimes the hidden finding that launches new topic areas of study. This is more commonly known as the “Aha!” moment. Discovery of the first vitamin is a clear example. In the 1700s, a British naval surgeon, James Lind, gave a great deal of thought to the vast occurrence of scurvy among English sailors. The disease was particularly rampant on long voyages. In 1747, Lind completed the first controlled dietary study where he proved that citrus fruits cured scurvy. Six years later Lind\(^2\) published his treatise, and in 1796, 43 years after his publication, the British navy officially introduced lemon juice as a prophylactic against scurvy.

More than a century later, in 1906, the concept of developing accessory food factors was introduced. In 1932, 185 years after Lind’s first controlled study, crystalline vitamin C was prepared from lemon juice. While no one can plan for a breakthrough (such as the dietary importance of citrus fruit), investigators should always be alert for the unexpected. For example, the findings from the Women’s Health Initiative reported completely unexpected results regarding the use of progestin-containing hormone therapy, which was long considered protective; the report found that progestin was adversely associated with increased risk of postmenopausal breast cancer.\(^3\)\(^-\)\(^5\) These results changed the course of clinical postmenopausal management almost overnight. From 1988 through 1994, 44% of American women reported using hormone therapy, but this was reduced to 4.7% by 2010, with ongoing recommendations against its use in 2017 by the US Preventive Services Task Force.\(^6\)

Extending Existing Data

Going beyond what is known to discover what is not known remains a compelling force of research. Another classic example is discovery of the second vitamin. When the idea of accessory food factors was introduced to the scientific community, researchers eagerly devoted attention to ascertaining whether other important food factors existed and their sources and functions. From 1913 to 1916, research teams led by McCullum et al\(^7\)\(^-\)\(^8\) observed and isolated components from foods that they termed Fat Soluble A and Water Soluble B. Shortly thereafter, Fat Soluble A was partitioned into vitamins A, D, E, and K, and Water Soluble B developed into the long series of B vitamins.\(^9\) This search for accessory food factors was a highly productive extension of the earlier discovery of vitamin C.

A more current example is the study of glycemic index and glycemic load. While the relevance and practical application of these two factors in regards to development of insulin resistance or type 2 diabetes remains somewhat mixed,\(^10\)\(^-\)\(^11\) awareness of the potential role of these factors in impacting postprandial glucose/insulin response opened a new and compelling area for nutrition research.\(^12\)\(^-\)\(^14\) The epidemiologic relevance of a topic like this and its importance in setting the stage for next generation research are addressed more extensively in Chapters 5 and 7.

One of the trending topics of today centers on the growing awareness of biomarkers, which can help provide objective measures of nutrient intake and help to identify biological pathways and processes related to digestion, absorption, and metabolism. Chapters 16 and 21 are particularly relevant to this topic and offer insights into how best to cross-check diet intake with metabolic outcomes.

Also, with the increasing interest in precision medicine and now precision nutrition, nutrigenomics and the myriad of diet-gene interactions are likely to become even more important to the understanding of prevention and diet therapy to meet the
needs of the individual, including questions regarding weight control. Chapter 19 is devoted to this topic and raises many hypothesis-generating research questions.

Point-Counterpoint Comparisons

The point-counterpoint concept involves actions and reactions. A current example is the explosion of “functional foods,” including prebiotics and probiotics that have been developed by the food industry, presumably to conveniently meet nutrient needs of busy people without imposing the hassle of buying and preparing raw ingredients. Whether these foods and products prove helpful or harmful (perhaps due to extra calories, sugar, salt, or other factors) remains controversial, but the presence of these products continues to have a growing influence on the modern diet. The knowledge gap associated with their risk-benefit ratios—especially the gap based on age, sex, health status, and pharmacological influences—requires future study.

Responding to the Socioeconomic, Political, and Culturally Diverse Environment

The Special Supplemental Food Program for Women, Infants and Children (WIC) represents an outstanding response to the socioeconomic and political environment. Evaluation and documentation of the WIC program and innovative new approaches are among the prime reasons that the program has been so successful. Increasing cultural diversity and the accompanying increase in rates of homelessness raise challenges related to economic opportunity and adequate nutrition for underserved pregnant women. Qualitative research on these and associated topics is addressed in Chapter 6. Applied research on these topics offers promise for ameliorating these difficult problems.

Research Now

Nutrition research has never been more exciting or more challenging. The forces of research are ever influencing new studies and their findings. Registered Dietitian Nutritionists (RDNs) are encouraged to take an active role in designing studies, both basic science and clinical, to document the benefits of nutrition in prevention and treatment of disease. Applied translational research is especially valued; it takes results from bench to bedside and even curbside, offering timely community health benefits derived from well executed experimental and clinical designs. Chapters 11, 18, 29, and 30 are especially relevant in this area. This book offers a wealth of tools and techniques for designing nutrition research studies of your own. Here are a few of the basics to get you started.

Prepare the Research Protocol

A research protocol is essential to direct the study in a manner that ensures meaningful results. The research protocol includes (1) specific aims and hypotheses that pose focused and concisely stated research questions, (2) a comprehensive literature review, (3) the merit and potential value or innovations of the research, and (4) the appropriate research design to adequately test the hypotheses. Research design includes the study methods, data collection, and decisive statistical analyses to be used to test the hypotheses. See Chapters 8 through 10.

Research proposals must conform to a funding agency’s requirements, as stated in its guidelines. Chapter 4 provides detailed guidance on securing funding. Many private and public agencies model their guidelines after those of the National Institutes of Health (NIH). Proposals are typically submitted electronically, requiring the authors to pay careful attention to all details, including the due date and time.

Conduct the Pilot Study to Produce Preliminary Data

A pilot study to generate preliminary results is essential in most NIH studies to demonstrate the feasibility and merit of the proposed study design and methodology. Testing instruments and validated methods permits researchers to make adjustments before launching the study, thereby assuring that data collection is efficient and accurate. All data collection needs justification. Providing preliminary data and demonstrating experience gained from the
pilot study are crucial to successful review and funding for the proposed project. See Chapters 2, 8, 9, 12, and 13.

Ensure Ethical Research

Institutional Review Board (IRB) approval is required prior to initiating all research studies. Researchers must follow ethical procedures in all aspects of the design and conduct of their research. Everything, ranging from the choice of topic, to the samples collected, to the interventions designed, to the data collected, to—perhaps most important of all—gaining informed consent, must be considered ethical as judged by IRB approval. Data analyses and reporting of data are likewise subject to scrutiny. Chapter 3 provides a more detailed discussion.

These investigations must meet ethical guidelines to protect the rights, privacy, and welfare of the individuals. The Declaration of Helsinki, drafted in 1964 by the World Medical Association, serves as the basis for the ethical guidelines that are now detailed regulations issued by governmental agencies, such as the NIH. The local IRB is required to review all investigations using human subjects to ensure ethical conduct and evaluate potential risks and benefits.

As part of informed consent, the investigator must explain to potential participants the nature of the study, including the possible risks and discomforts they may experience. Confidentiality of all data is mandated by all review boards. Specific elements to be included in the informed consent procedure, including written and verbal descriptions, are designated by the local IRB. See Chapters 3 and 9.

Validity, Accuracy, Reliability, and Precision

Qualities critical to all research are validity, accuracy, and precision. Use of validated instruments is essential to ensuring accuracy, reliability, and precision of the data and the results. The National Cancer Institute has developed a highly comprehensive Dietary Assessment Primer (https://dietassessmentprimer.cancer.gov) that provides detailed definitions and examples of these and other aspects of nutrition research as follows:

- **Validity**: The degree to which a tool measures what it claims to measure.
- **Accuracy**: The degree of closeness of measurements of a quantity to that quantity’s true value.
- **Precision**: The degree to which repeated measurements under unchanged conditions show the same results.

Sensitivity and Specificity

The choice of a single cut point to categorize individuals may not always be clear when the test yields a continuous scale of values. A cut point selected to maximize sensitivity will unavoidably cause the test to be less specific. The selection of an appropriate cut point is aided by use of graph plotting true-positive against false-positive ratios, known as the receiver operating characteristic (ROC) curve. The ROC curve graphically displays the reciprocal relationship between sensitivity and specificity for values of a test measured on a continuous scale, and it allows investigators to choose a cut-point that maximizes the performance of the test for the needed levels of sensitivity, specificity, or both. See Chapters 17, 25, 28, for more detailed explanations.

National Health and Nutrition Examination Survey (NHANES) I, II, and III provide countless examples of valid survey testing. The mean intakes of certain vitamins by age and gender are useful for determining areas of weakness in the population’s diet and indicating possible policies to apply. Limitations in survey results often include low response rate and cross-sectional design. Randomized clinical trials and longitudinal cohort studies are considered more robust, but these also have limitations that require further considerations. Chapters 8, 9, 12, 13, and 14 offer further discussion and insights regarding these issues.

Researchers must also use discretion in applying inferential statistical tests to data from survey research. Because survey studies are designed to be descriptive rather than analytic, formal tests of hypotheses are undertaken after the data are viewed,
and the test result is likely to be biased toward a spurious statistically significant result. Such inferential tests should be regarded as exploratory and useful in generating questions for future analytic studies. Chapters 21 and 25 offer further explanation of this topic.

ADVANCING YOUR OWN RESEARCH

The topics listed in this chapter represent only a few of the key aspects of nutrition research that are addressed in this book. The possibilities are endless, but the competitive nature of grant reviews and funding constraints often steer research proposals towards filling high priority knowledge gaps identified by the funding agencies. A newly convened Dietary Guidelines for Americans Advisory Committee, with the assistance of the Nutrition Evidence Library, conducts systematic reviews of newly published nutrition research every 5 years as part of the process for developing the next edition of the Dietary Guidelines for Americans. Savvy researchers can begin with the end in mind by reviewing these priority areas and carefully developing testable hypotheses that will address them. Consider the population, intervention, comparator, and outcome (PICO) that form the criteria used in systematic reviews. Formulation of study questions, specific aims, and validated outcome measures that are consistent with these criteria can often make or break an investigator’s chances of achieving a fundable score.

CONCLUSION

In this era, massive use of social media, blogs, tweets, and crowdsourcing to derive answers to countless questions has influenced public perception of what to believe and how to behave. The importance of evidence-based science to provide sound answers and guide public policy, including what to eat, is paramount. Take these tools and go for it!

REFERENCES

2. Lind J. A treatise of the Scurvy. In three parts. Containing an inquiry into the nature, causes, and cure, of that disease. Together with a critical and chronological view of what has been published on the subject. Edinburgh, Scotland; Sands, Murray, and Cochran for A Kincaid & A Donaldson; 1753.

Index

Page numbers followed by b, f, or t refer to boxes, figures or tables.

3DPAR, 61t
10-undecenoate, 388t
23andMe, 394
45 Code of Federal Regulations part 46, 37
24-hour dietary recall
automated self-assessed, 254
interviewer administered, 251, 253–254
α error, 469–471
β error, 470
ϕ coefficient, 499
A
abstracts, 555
for podium presentations, 531
for poster presentations, 527, 528f
of research reports, 519, 520f
Academy of Nutrition and Dietetics, 128b, 214, 431b, 513, 516, 523, 560, 566
Code of Ethics, 35
Council on Research, 574
Data Extraction Tool, 197
EBP adoption by, 193
Evidence Analysis Library, 128, 146, 193, 208, 573
Evidence Analysis Manual, 213b
evidence analysis roles in, 211b–212b
funding from, 55
on nutrigenetics, 397
Nutrition Research Network, 361, 572, 573, 575, 583
Quality Criteria Checklist, 197, 199, 200f–203f, 579
Quality Management Committee, 583
Research Ethics for the Registered Dietitian
Nutritionist, 387f
research gaps assessed by, 128
Standards of Education, 576
Academy of Nutrition and Dietetics Health Informatics Infrastructure (ANDHII), 573, 575
Academy of Nutrition and Dietetics Informatics Infrastructure, 128b
Academy of Nutrition and Dietetics Methodology for Conducting Systematic Reviews for the Evidence Analysis Library, 213b
Acceptable Macronutrient Distribution Range (AMDR), 297, 302, 307
Accreditation Council for Education in Nutrition and Dietetics (ACEND), 462, 564
accuracy
computer-assisted interviews and, 241
defining, 5, 108
doing dietary recall interviews, 169
doing of food records or diaries, 254
doing of interview responses, 459
doing of patient intakes, 580
proofreading for, 530b
quality improvement and, 148
of questionnaire data collection, 458
ACEND. See Accreditation Council for Education in Nutrition and Dietetics
acetaminophen, 342
Adequate Intake (AI), 296–297, 302
limitations of, 306
adherence
assessing, 144
doing clinical nutrition study participants, 144–145
in community-based research, 602, 603
in dietary supplement research, 437
to grant proposals, 67
in metabolic studies, 144–145
to research plans or proposals, 67
administration
ASA24, 253, 599
of dietary supplements, 436
of survey questionnaires, 240, 241
of 24-hour dietary recall, 251, 253–254
Adult Cancer Control Module, 166
Agency for Healthcare Research and Quality (AHRQ), 197, 213b, 439
AGREE II. See Appraisal for Guidelines Research Evaluation
AGRICOLA, 176b
Agricultural Research Service (ARS), 160t, 162t, 169, 176b, 273, 274, 289
Agriculture Handbook No. 8: The Composition of Foods: Raw, Processed, Prepared, 272
AHRQ. See Agency for Healthcare Research and Quality
alanine, 386t
alcohol
biomarkers and, 313
breast cancer and, 24
GWASs and, 388t–389t
algorithms, 542
alpha-linolenic acid, 387t
alpha-tocopherol, 385t
Alternative Healthy Eating Index, 313
alternative hypothesis
defining, 484–485
sample size calculation and, 469–470
AMDR. See Acceptable Macronutrient Distribution Range
American College of Cardiology, 351
American Diabetes Association Standards of Medical Care in Diabetes, 578
American Dietetic Association, 456
American Heart Association, 351
funding from, 55
American Journal of Clinical Nutrition, 516, 517t, 518, 560, 564
American Journal of Public Health, 517t
American Oil Chemists’ Society (AOCS), 147
American Society for Nutritional Sciences Working Group, 155
American Time Use Survey, 167
amino acids
assembly of, 382
genetic variation and, 383
GWASs and, 386–387
in parenteral solutions, 497
SNPs and, 383
triplets coding, 381
AMPM. See Automated Multiple-Pass Method
AMRM Program. See Analytical Methods and Reference Materials Program
analysis plans, ethics and, 46
Analytical Methods and Reference Materials (AMRM) Program, 431
analytic frameworks
for evidence-based dietetics practice reviews, 194, 195
for economic analysis, 366, 368
analytic methods, in economic analysis, 364–366, 364t
analytic nutrition epidemiology
biases in, 110–111
cohort studies in, 114–116
concepts in studies for, 107–112
confounding in, 111–112
cross-sectional studies in, 113
effect modification and, 112
exposures, 108
goals of, 103–107
nutrition exposure variable choices, 108–110
overview of, 103
poor exposure measurements and, 110
research question in, 107–108
study designs, 112–121
ANDHII. See Academy of Nutrition and Dietetics Health Informatics Infrastructure
antioxidants, 424t
AOAC. See Association of Official Analytical Chemists
Atherosclerosis Risk in Communities study (ARIC), 115
Atwater, W.O., 272
Atwater table, 272
t
basal metabolic rate (BMR), 262
behavior.
See also cognitive behavioral therapy; theory of reasoned action/planned behavior
eating, 339–340
food attitudes and, 173
nutrition monitoring and assessment of, 162t–165t, 172–173
youth, risky, 173
behavioral processes, 414
Behavioral Risk Factor Surveillance System (BRFSS), 155, 162, 172–173, 176b
behavior change theory
key constructs, 407t
using, 408–415
behavior change theory-based research, 405
bariatric surgery, 504t
diabetes remission and, 501b–502b
basal metabolic rate (BMR), 262
BCBP. See bias-corrected best power method
behavior. See also cognitive behavioral therapy; theory of reasoned action/planned behavior
eating, 339–340
food attitudes and, 173
nutrition monitoring and assessment of, 162t–165t, 172–173
youth, risky, 173
behavioral processes, 414
Behavioral Risk Factor Surveillance System (BRFSS), 155, 162, 172–173, 176b
behavior change theory
key constructs, 407t
using, 408–415
behavior change theory-based research, 405
ARIC. See Atherosclerosis Risk in Communities study
array tables, 374
ARS. See Agricultural Research Service
arsenic metabolism, 388t
ASA24. See Automated Self-Administered Recall System
ascorbic acid, 18
association
case-control studies for examining, 116–118
cohort studies for examining, 114–116
continuous data, 502
cross-sectional studies for examining, 113
defining, 103–104
discrete data, 499
establishing, 103–105
genome-wide studies of, 384
measures of, 104, 104b
observational study designs for examining, 113–118
statistical procedures for estimating, 499, 502–507
strength of, in binary variables, 499
study designs for, 104–105
Association of Official Analytical Chemists (AOAC), 147, 279
dietary supplement standards by, 431
Atherosclerosis Risk in Communities study (ARIC), 115
Atlasti, 95b
attack rate, 76
attributable risk, 104
Atwater, W.O., 272
Atwater table, 272
authors
checklists for, 522
conducting research, 559
editor communication with, 561b
ethics and, 48–49
irresponsible authorship, 562–563
journal choice of, 560, 561b
manuscript preparation, 559–560
manuscript submission, 561, 561b
perspective on research, 558–563
authorship. See also writers
ethics and, 48–49
irresponsible, 562–563
Automated Multiple-Pass Method (AMPM), 169, 253, 599
Automated Self-Administered Recall System (ASA24), 253, 599
attack rate, 76
choosing theory for, 407–408
 guidelines for applying, 406–408
 importance of, 406
Belmont Report, 37
benefits
discounting, 373–374
types of, 372
benefit stream, 366
Berkson bias, 110, 117
beta carotene, 109, 354t, 385t
betaine, 386t
Bethesda Statement on Open Access Publishing, 517
bias
 in analytic nutrition epidemiology, 110–111
 Berkson, 110, 117
 in clinical nutrition studies, 147
 in data analysis, 111
 incidence-prevalence, 110
 information, 110
 measurement, 44
 Neyman, 173
 noncoverage, 43
 nondifferential, 110
 nonresponse, 43–44
 other sources of, 44–45
 recall, 390
 sampling, 43, 178–179
 selection, 21, 357, 390
 treatment, 44
 unintentional, 111
 volunteers’, 110
 bias-corrected best power method (BCBP), 304, 308
big data, visualizing, 554–555
binary variables, 482
 strength of association, 499
binge eating, 61f
biological measures, in nutrition assessment, 313–314
biological plausibility, 106
biological variability, QA and, 326
biomarkers, 3, 231, 258
 alcohol and, 313
 of appetite, 339
 blood, 260, 314b, 316f
 calibration of self-reported intake with, 320–322
 defining, 311–312
 dietary intake method validation with, 259–261
 in dietary supplement research, 437, 438f, 439
 of energy, 318–320
 general considerations in using, 325–326
 as general dietary indicators, 315–318, 315t
 long-term, 314b
 for macronutrient assessment, 315f
 medium-term, 314b
 metabolomics and, 322–323
 microbiome and, 312
 in nutrition assessment, 313–314
 of nutrition for development, 323
 of plant-based diets, 317t
 plasma, 314b
 of polyphenol intakes, 318
 for protein, sodium, potassium and sugars intake, 320
 quality assurance and, 326
 recovery, 262
 sample collection considerations, 323–325
 short-term, 314b
 smoking and, 313
 urine, 261, 314b
Biomarkers of Nutrition for Development (BOND), 323
biospecimen data collection, 598–599
bladder cancer, 27
blinding, 111, 133
Block Questionnaires, 256
block substitutions, 383
blood biomarkers, 260, 314b
 for nutrition assessment or dietary intake
 monitoring, 316f
blood collection, 314
 practical considerations in, 323–324
blood pressure, 108, 115, 122, 140
 obesity and, 112
 salt intake and, 106, 114
BLS. See Bureau of Labor Statistics
BMI. See body mass index
BMR. See basal metabolic rate
body mass index (BMI), 61f, 492, 494t
BOND. See Biomarkers of Nutrition for Development
bone density testing, 520f
bone metabolism, 581
bone mineral managers, 581
Botanical Dietary Supplements Research Centers, 429
Bradford Hill criteria, 105–106, 105b
Branded Foods Products Database, 171, 274, 275f
BRCA1. See breast cancer gene 1
BRCA2. See breast cancer gene 2
breast cancer
 alcohol-related, 24
 diet and, 16
 dietary fat and, 251, 258
 osteoporosis and, 520f
 progestin hormone therapy and, 3
 vitamin D and, 513
breast cancer gene 1 (BRCA1), 383
breast cancer gene 2 (BRCA2), 383
breastfeeding, 168, 297
BRFSS. See Behavioral Risk Factor Surveillance System
brief assessment tools, 258
British Medical Journal, 564
Budapest Open Access initiative, 517
budgets
 for clinical nutrition research, 139
 in research strategy, 65–66, 66b
Bureau of Labor Statistics (BLS), 160t
Burnaby, British Columbia, 430t
Ccadmium, 385f
caffeine, 388t
gene studies and, 389t
calcium, 299f, 303f, 385f, 438t
 estimating body, 313
 foods rich in, 12
 serum, 581
calibration equations, 321
calibration of self-reported intake, with biomarkers, 320–322
Campbell Collaboration, 213b
cancer. See also National Cancer Institute
 bladder, 27
 breast, 3, 16, 24, 251, 258, 513, 520f
 colon, 76b, 251
 lung, 109
CAPI. See computer-assisted personal or telephone interviews
carbon-13 (13C), 314
CARDIA. See Coronary Artery Risk Development in Young Adults
cardiocvascular disease, 112, 582
carotenoids, 276, 298, 316, 438t
plasma levels of, 315
smoking and, 112
carryover effect, 333, 336b
case-comparison studies. See case-control studies
case-control studies, 104
advantages and disadvantages of, 116
alternative designs, 117–118
analytic considerations in, 118
case selection, 26
control selection, 26–27
examining associations with, 116–118
exposure assessment, 27
features of, 25
finding types in, 118
of gene-diet interactions, 390
implementation issues, 116–117
nested, 390
sample size, 475–476
statistical analysis and interpretation, 27–28
uses of, 25
case-referent studies. See case-control studies
case reports, 81
case series, 12–13, 81
case studies, 90t, 461b, 597t
Catalogue of Surveillance Systems, 81, 157, 176b
CATCH. See Child and Adolescent Trial for Cardiovascular Health
category scales, 338, 338f
CATI. See computer-assisted personal or telephone interviews
causation
criteria for, 105–107, 105b
defining, 105
establishing, 105–107
etiologic study designs for examining, 118–121
study designs for, 107
CB. See US Census Bureau
CBA. See cost-benefit analysis
CBPR. See community-based participatory research
CCK. See cholecystokinin
CDC. See Centers for Disease Control and Prevention
CEA. See cost-effectiveness analysis
cell separation tubes, 314
Center for Food Safety and Applied Nutrition, 176b
Center for Nutrition Policy and Promotion, 176b
Centers for Advancing Research on Botanical and Other Natural Products Program, 429, 430t
Centers for Disease Control and Prevention (CDC), 38, 158t, 176b
Community Guide, 213b
economic analysis and, 376
food environment studies by, 174
Growth Standards, 157
laboratory quality assurance and standardization programs, 431
nutrition surveillance programs, 167, 168b
vital statistics reporting by, 82
Centers on Advancing Natural Product Innovation and Technology, 429
Centre for Reviews and Dissemination (CRD), 213b
CGMPs. See Current Good Manufacturing Practices
chance observations, 46
checklists
author, 522
Critical Appraisal Skills Programme, 565
Quality Criteria Checklist, 197, 199, 200f–203f, 579
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE), 522
Child and Adolescent Trial for Cardiovascular Health (CATCH), 120
Child Growth Standards, 168b
cholecystokinin (CCK), 333, 340
choline, 276, 276t
chromosomes, 381
Chronic Kidney Disease-Mineral and Bone Disorder Clinical Practice Guidelines, 581
CITI. See Collaborative Institutional Training Initiative Program
citrate, 388t
Classification of Laws Associated with School Students (CLASS), 166t
data set, 174
ClinCalc, 478b
Clinical and Laboratory Standards Institute, 431
Clinical and Translational Science Awards (CTSA), 139
Clinical Nutrition Management dietetic practice group, 583
clinical nutrition managers (CNMs), 583
clinical nutrition research, 126
bias in, 147
budgets for, 139
data analysis for, 148–149
data management in, 147–148
defining, 127
economic analysis and, 376
free-living, 135, 138
identifying needs for, 127–129
incentives in, 143
objectives of, 129, 130f
parallel randomized controlled trials for, 131–132, 131f
participant monitoring, 143–144
participant population selection for, 139–140
participant randomization, 142–143
participant recruitment, 141
participant retention and adherence, 144–145
participant screening, 141–142
potential problems, 147
quality improvement and, 147–148, 149f
Randomized controlled trials for, 131
resources for, 128b, 138–139
sample size, 140–141
study design for, 131–135, 138
study hypotheses and objectives, 129, 130f
study participants in, 139–145
survey methods in, 231
training for, 148
translation of results, 150
varying control in, 137f
clinical practice guidelines, 207
Clinical Practice Guidelines We Can Trust, 214b
clinical significance, 477
Clinical Trial Planning Grant, 56t
clinicaltrials.gov, 515
closed-circuit calorimetry, 319
closed-ended questions, 242, 243b
cluster randomization, 133–134, 134f
for community-based research, 600, 602
cluster sampling, 308
defining, 237b
Index

CNMs. See clinical nutrition managers
Cochrane Collaboration, 565
Cochrane Handbook, 199
Cochrane Handbook for Systematic Reviews of Interventions, 213b
Cochrane Library, 565
Code of Ethics, 35
CODEX, 282, 284
Codex Alimentarius, 272
coding
of food names and descriptions, 282
for qualitative data analysis, 94–95
cognitive behavioral therapy, 411
cognitive factors, in appetite research, 337
cognitive response tasks, 92
cohort studies, 22–25, 104
advantages and disadvantages of, 114–115
examining associations with, 114–116
exposure status assessment, 24
features of, 24
finding types in, 115–116
of gene-diet interactions, 390
implementation issues, 115
outcome assessment, 24–25
participant selection for, 24
sample size, 476–477
statistical analysis and interpretation of, 25
use of, 22–23
colinearity, defining, 232b
Collaboration and Team Science: A Field Guide (NIH), 221–222
Collaborative Institutional Training Initiative (CITI) Program, 38f
colon cancer
cumulative incidence, 76b
meat consumption and, 251
Commission on Dietetic Registration
Code of Ethics, 35
Compensation and Benefits Survey for the Dietetics Profession, 369
Committee on Diet and Health, 107
Common Rule, 37, 41
communication
between author and editor, 561b
through community presentations, 536–537
copyright control over, 562
ethics in, 47
graphs enhancing, 548
guidelines for, 48b
in multicenter research, 121
in multidisciplinary research, 223–224
of study findings, 150
Community-based participatory research (CBPR), 599
Community-based research, 592
adherence in, 602–603
cluster randomization for, 600, 602
community partner involvement in, 599–600, 602–603
qualitative aspects of, 596–597
quantitative aspects of, 597–599
recruitment in, 600
research design for, 593–594, 595f, 596, 602f
study results and community focus, 603
community controls, 117
community intervention impacts, 598
Community presentations, 536–537
Community trials, 594
Companion calibration studies, 109
comparability, dietary, 259
comparative studies, 461b
Compensation and Benefits Survey for the Dietetics Profession, 369
complex situations, sample size, 477
compliance
efficacy and, 44
to study protocols, 17, 21
Computer Access to Research on Dietary Supplements database, 425
counter-assisted personal or telephone interviews (CAPI/CATI), 241
counter graphics software, 546, 548
conclusions
false-negative, 471
false-positive, 471
from statistical results, 469–470, 469t
conclusion statements
Academy of Nutrition and Dietetics Evidence Analysis Library, 208
evidence-based dietetics practice, 206f, 207t
confidence interval, 496–497
confidentiality, 41–42
confirmability, 97
conflicts of interest, 49
controlling, in analytic nutrition epidemiology studies, 111–112
confounding variables
defining, 232b
unmeasured, 22
Consolidated Standards of Reporting Trials (CONSORT), 46, 135, 150f, 214b, 522
constraints
knowledge, 586
time, 587
constructive criticism, 561b
constructs
in behavior change theory, 407t
examining relationships between, 408
of health belief model, 408–409
of social cognitive theory, 410–412
theoretical, 60, 62
theories and, 406
theory of reasoned action/planned behavior, 410
of transtheoretical model, 412–415, 416b
variables reflecting, 407
Consumer Expenditure Survey, 160t, 167
contemplation stage, 415
content analysis, 94
Continuing Survey of Food Intakes by Individuals (CSFII), 81, 169
continuous data
associations in, 502
paired, 471–472
summary statistics describing, 492–493
continuous variables, 482–483, 482f
time control conditions, 335, 336b
time controlled feeding studies, human, 320
copper, 385f
copy number variants, 383
copyright, 562b
Coronary Artery Risk Development in Young Adults (CARDIA), 104, 112, 255
coronary heart disease, 260
correlation analysis, 408, 502–503, 505f, 506b
correlation studies, 461b
cost analysis, 368, 369
applying, 371
cost-benefit analysis (CBA), 364, 364f, 365
applications of, 373
sensitivity analysis and, 375
cost-decision analysis, 364f
cost-effectiveness analysis (CEA), 352, 362b, 363, 364, 364f
applications of, 373
of medical nutrition therapy 361
outcomes, 371–372
sensitivity analysis and, 375
cost minimization analysis, 364

cost outcomes, 354–355
costs
assigning monetary value, 369–370
discounting, 373–374
gross, 369
macro costing, 369
micro costing, 369
opportunity, 361
relating to outcomes, 374–375
special considerations for, 370–371
summarizing and reporting, 370
types of, 368, 368b
cost stream, 366
cost-utility analysis, 364, 364f
council on research, 211b, 574
courtroom analogy, 486, 487b
CPS. See Current Population Survey
CRD. See Centre for Reviews and Dissemination
C-reactive protein (CRP), 140, 354f
credibility, 97
criminal trials, hypothesis testing and, 487b
Critical Appraisal Skills Programme checklists, 565
critically ill children, 581
crossover study design, 131–132, 132f, 336b
cross-sectional studies, 13–14, 81, 104
examining associations with, 113
of gene–diet interactions, 390
surveys, proportions, and continuous variables, 473–474
CRP. See C-reactive protein
CSFII. See Continuing Survey of Food Intakes by Individuals
CTSA. See Clinical and Translational Science Awards
cumulative incidence, 75–76, 76b
Cumulative Index to Nursing and Allied Health Literature, 525
Current Good Manufacturing Practices (CGMPs), 423
Current Population Survey (CPS), 160, 166
curve difference graphs, 553f
cut-point approach to nutrient inadequacy estimation, 305–306
CYPIA2 gene, 393
cytochrome P450 1A2, 393f
data
big, 554–555
continuous, 471–472, 492–493, 502
discrete, 492, 499
extracting, 197, 199
food environment and policy, 164f–167f, 174
for nutrition monitoring, 156
paired continuous, 471–472
surveillance, 178–179
data aggregation, 281
data analysis
bias in, 111
in clinical nutrition research, 148–149
coding for, 94–95
data display for, 95–96
for nutrition survey and surveillance data, 178
qualitative, 93–96
in research proposals, 61–62
secondary, 177–180
in survey research, 246–247
weighted, 179
databases. See food composition databases; specific databases
data cleaning, 236, 236b
data collection
in case series, 12–13
in community-based research, 598–599
for foodservice management research, 447–448, 448b
for nutrition and dietetics education research, 457–461
for qualitative research, 88–93
for randomized controlled trials, 20
in research proposals, 61
scale of measurement and, 481–482
with surveys, 15–16
in survey studies, 238–242
data collection tools, evaluation measures, 61f
data compilations, 279–281
data compilers, 279–281
data display, for qualitative data analysis, 95–96
data distortion, 45–46
data dredging, 45
Data Extraction Tool (DET), 197, 199f
DataFerrett, 176b, 178
data interpretation, statistics in, 46–47
data management, in clinical nutrition research, 147–148
data quality, nutrition survey and surveillance data and, 179–180
data sets
confidentiality and, 41
federal information sources on, 176b
linking, 41
data visualization techniques, 554–555
decisional balance, 412, 414
Declaration of Helsinki, 5, 36
Dedoose, 95b
degeneracy, 381
Delphi process, 93, 449–450
Delphi research design, 449f
delta-6 desaturase activity, 387f
demographic measurements, 81–82
Department of Health and Human Services (HHS), 158t, 169, 230, 231, 289, 425
Department of Housing and Urban Development, 166
dependability, 97
dependent samples, study design and statistical analysis, 483
descriptive epidemiologic studies, 103
terminology for, 75
descriptive research designs, 11–16, 79–82
for foodservice management, 449
for nutrition and dietetics education research, 457
descriptive studies, 74
Index 613

Dietary Supplement Ingredient Database (DSID), 162t, 171, 171b, 172

dietary supplements. See also specific supplements
administration of, 436
botanical centers of excellence and, 429
context of research in dietetics practice on, 428–429
databases for, 277
defining, 422, 423
documentation of use, 440–441
dosage determination for research on, 432
labels for, 298–299, 423–424, 424f
outcomes in research on, 437–439
product integrity resources for, 431
randomized controlled trials for, 427–428
research approaches for, 426–429, 426f
research design for, 432–439
research funding and priorities, 425–426
research methodology, 431–432
research programs for, 429, 430b
selection of, for studies, 435–436
training opportunities for, 441–442
use of, 424–425
dietary intake, 299–300
assessing in individuals, 300–303
assessing in populations, 303–308
biomarkers and validating, 259–261
blood biomarkers for monitoring, 316f
calculating prevalence of adequacy, 304–305
community assessment of, 598–599
estimating distributions of, 303–304, 304f
probability approach to estimating, 305, 306
special populations and, 263
underreporting, 261–262
dietary quality indexes, 231
Dietary Reference Intakes (DRIs), 126, 171, 280, 294
definitions for, 295b
dietary supplement labeling and, 423
establishing, 295–296
Estimated Average Requirement and, 296
framework of, 296–300
individual diet assessment using, 302–303
special considerations in, 297–299, 299f
validity and reproducibility of, 259
Dietary Reference Values, dietary supplement labeling and, 423
Dietary Screener Questionnaire, 166
Dietary Supplement Health and Education Act of 1994, 422

design effects, nutrition survey and surveillance data
and, 179
DET. See Data Extraction Tool
Developing NICE Guidelines: the Manual, 214b
development
biomarkers of nutrition for, 323
career, 572, 573b
of posters, 527, 529, 530b
DEXA, 61f
DFE. See dietary folate equivalent
dGA. See Dietary Guidelines for Americans
dGAC. See Dietary Guidelines Advisory Committee
diabetes, 575, 578
bariatric surgery and remission in, 501b–502b
GRS and, 393
prediabetes, 27, 577
type 2, 3, 140, 389, 393
Diabetes Care, 517f

didactic programs in dietetics (DPDs), 397
diet
as exposure, 108
gene interactions with, 389–390, 391f–392f
genetic determinants of exposure and response to, 384, 385f–389f, 389
Dietary Approaches to Stop Hypertension (DASH), 108, 258
dietary assessment, 250, 380
biomarkers and validating, 259–261
potential errors in methods of, 258–259
Dietary Assessment Primer, 5, 255
dietary comparability, 259
dietary fiber, 109
dietary folate equivalent (DFE), 298
Dietary Guidelines Advisory Committee (DGAC), 234
Dietary Guidelines for Americans (DGA), 6, 9, 145, 155b, 234, 279, 284
Dietary Guidelines for Americans Advisory Committee, 6
dietary indicators, biomarkers as, 315–318, 315f
dietary inflammatory index (DII), 27
Dietetics Practice Based Research Network (DPBRN), 128b

diet histories, 251, 255
Diet History Questionnaire, 256
Dieticians in Nutrition Support and Dietetic Practice Group, 525

diet-quality indexes, 23
diet-related inflammation, 27
diet soda, 115
digital animation, 539
dihomo-gamma-linolenic acid, 387t
DII. See dietary inflammatory index
direct benefits, 372
direct-to-consumer genetic testing, 394, 397
discounting, of costs and benefits, 373–374
discrete data, 492, 499
discrete variables, 482–483, 482f
disease frequency, 75–79
distribution maps, 542, 552, 554f
dithiocarbamates, 318
Division of Cancer Prevention, 525
DLW. See doubly labeled water
DNA, 381, 382f
mutations in, 383
docosapentaenoic acid, 387t
documentation
of dietary supplement use, 440–441
for evidence-based dietetic practice reviews, 197
of effectiveness, research for, 581–582
dose–response relationships, 106
doubly labeled water (DLW), 260, 262, 319, 321
DPBRN. See Dietetics Practice Based Research Network
DPDs. See didactic programs in dietetics
DPGs. See dietetic practice groups
DRIs. See Dietary Reference Intakes
EAL. See Evidence Analysis Library
EAR. See Estimated Average Requirement
Early Childhood Longitudinal Study, 167
Eating and Activity in Teens (EAT), 63
eating behavior, 339–340
EBDP. See evidence-based dietetics practice
EBP. See evidence-based practice
ecological frameworks, in nutrition research planning, 232, 233
ecological research, 358
ecological studies, 79–81
economic analysis. See also cost-benefit analysis; cost-effectiveness analysis
analytic frameworks for, 366, 368
analytic methods used in, 364–366, 364f
assigning monetary value in, 369–370
in clinical nutrition, 376
cost analysis for, 369
costs used in, 368b
cost types for, 368, 368b
ethics and, 375
frameworks for, 366, 368
interpreting and using results from, 375–376
in nutrition, 361, 363
objectives of, 366, 368
outcome determination, 371–374
of outcomes, 371–374
perspectives for, 367b
public health and, 376
steps of, 366, 368–376
study designs for, 372
Economic Research Service (ERS), 167, 176b, 425
editors, 212b
EER. See Estimated Energy Requirement
effectiveness studies, 357b
effect modification, 112
effect size, 407–408, 408b, 470
efficacy, compliance and, 44
efficacy studies, 357b
EI. See energy intake
eicosapentaenoic acid, 387f
electronic health records, 584
electronic presentations, of research, 537–539
eligibility criteria, for evidence-based dietetic practice reviews, 196
Elsevier, 518
employee training, incentive program impacts on, 21
end-stage renal disease (ESRD), 115
energy
biomarkers of, 318–320
EER, 297, 302, 307
estimating requirements, 146
measuring expenditure, 319
REE, 318–319
energy intake (EI), 262, 263
aberrant, 331
appetite and, 339
assessing, 307
evaluating, 302
environmental context
appetite research and, 333–334
food environment studies, 164f–167f, 174
eating behavior, 339–340
environmental exposures, 380
somatic mutations from, 383
environmental interventions, 411
EPIC. See European Prospective Study of Diet and Cancer epidemiology. See also analytic nutrition epidemiology defining, 74
descriptive studies, 75, 103
genetic studies in, 384, 390
nutrition, 102
Reporting of Observational Studies in Epidemiology checklist for reporting, 522
EpiTools, 478b
equipoise, 45
errors
α error, 469–471
β error, 470
in dietary assessment methods, 258–259
human, 35–36
hypothesis testing and, 486
measurement, 44, 106, 110, 261–262
noncoverage, 43
nonresponse, 43–44
other sources of, 44–45
random, 147, 321b
research, 35–36
sampling, 43
standard, 495–496, 496f
systematic, 321b
type I error, 394, 469–470, 486
type II error, 470, 486
ERS. See Economic Research Service
erithritol, 388f
erithrocyte transaminase, 312
ESRD. See end-stage renal disease
Estimated Average Requirement (EAR), 296, 300–302
Estimated Energy Requirement (EER), 297, 302, 307
ethical research, 5
ethics
analysis plans and, 46
authorship and, 48–49
in communication, 47
defining, 34–35
in designing, conducting, and analyzing research, 42–45
economic analysis and, 375
 equipe and, 45
in presentation and interpretation of research, 45–47
in publication, 47
research in climate of, 49–50
in research involving humans, 36–42
ethnography, 90b, 597b
etiologic fraction, 104, 104b
etiologic study designs, 118–121
European Prospective Study of Diet and Cancer (EPIC), 260, 278
Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease (Institute of Medicine), 353
evidence
level of, 439
research progression towards, 427–428, 428f
summarizing, 199, 204, 205f, 206f
Evidence Analysis Library (EAL), 128, 146, 193, 566, 573
conclusion statements, 208
cost-effectiveness review by, 361, 362b–363b, 363
dissemination, 210
Evidence Analysis Project Managers, 211b
evidence analysis question, 194–196
Evidence Analysis Work Groups, 211b
evidence analysts, 212b
evidence-based dietetics practice (EBDP)
 conclusion statement for, 206f, 207f
 conducting systematic reviews for, 193–199, 204,
 207–208, 210
 evidence analysis question for, 194–196
 extracting data and critically appraising articles
 for, 197, 199
 gathering research for, 196–197
 grading evidence for, 204, 207
 study designs for, 203t–204t
 summarizing evidence, 199, 204, 205t, 206f
 evidence-based practice (EBP), 192, 576
 dissemination of results, 208, 210
 future research, 212–213
 guidelines for, 207–208
 practice question in, 193
 research cycle of, 351, 351f
 resources for systematic reviews and guideline
 development, 213, 213b–214b
 strengths and limitations of guidelines and reviews, 210, 212
 evidence mapping, 196
 exons, 381
 experiential processes, 414
 experimental design, 9, 16–21, 594, 595
 for nutrition and dietetics education research, 457, 458b
 experimental study, 458b
 explanatory research, 461b
 Exploratory/Developmental Research Grant Award, 56t
 exposure
 assessing, in cohort, 24
 diet or nutrient as, 108
 genetics and diet, 384, 385t–389t, 389
 measurement of, 110
 exposure variables, 108–110
 external validity, 119, 357b
 in appetite assessment, 334, 334b
 in outcomes research, 355–357
 extracting data, 197, 199
 extreme case sampling, 91b

F

FAB. See Food Attitudes and Behaviors Survey
 Facebook, 539
factorial design, 21, 22, 132–133, 133f
false-negative conclusion, 471
false-positive conclusion, 471
FOA. See Food and Agriculture Organization
Farrell, Margaret, 539
fatty acids, 387f
 blood concentration of, 316t
 food levels of, 318
 membrane phospholipids and, 317
 trans, 118
FDA. See Food and Drug Administration
 fecal collection, 325
 Federal Interagency Working Group for Food Security
 Measurement, 166
 Feed Early Enteral Diet Adequately for Maximum Effect
 protocol (FEED ME), 584
 fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPS), 19
 ferretin, 316t, 385f
 FFQs. See food frequency questionnaires
 Fiese, Barbara, 224
 figures, in research reports, 521–522, 523f
 Finding What Works in Health Care: Standards for
 Systematic Reviews, 213b
 fisheries, 164t
 Fisheries of the United States survey, 173
 flavonoids, 276, 276t
 flowcharts, 542, 554f
 fluoride, 276, 276t
 fMRI. See functional magnetic resonance imaging
 FNDS. See Food and Nutrient Database for Dietary
 Studies
 FNS. See Food and Nutrition Service
 focus groups, 11
 for foodservice management research, 450
 research design, 449t
 FODMAPS. See fermentable oligosaccharides,
 disaccharides, monosaccharides, and polyols
 folate, 108, 299f
 blood concentration, 316t
 quantification of, 314
 folate/folic acid, 299t, 303t, 438t
 folic acid, 107, 170b
 follow-up, 413b
 follow-up studies, 22–25
 Food4Me, 394
 food analysis, 278–279
 Food and Agriculture Organization (FAO), 80
 Codex Alimentarius, 272
 Food and Agriculture Organization/International
 Network of Food Data Systems (INFOODS), 273, 274, 289
 Food and Drug Administration (FDA), 56, 107, 170b
 Center for Food Safety and Applied Nutrition, 176b
 Current Good Manufacturing Practices and, 423
 nutrition monitoring by, 173
 Safety Reporting Portal, 432
 surrogate outcomes and, 353
 Total Diet Study, 170, 172, 273
 Food and Nutrient Database for Dietary Studies
 (FNDS), 162f, 171, 171b, 172, 272, 274, 276
 Food and Nutrition Board, 126, 295
 Food and Nutrition Service (FNS), 160f, 176b
 Food Attitudes and Behaviors Survey (FAB), 173
 Food Availability Data System, 164f, 173
 Food Balance Sheets, 80
 food component variability, 286–287
 Food Composition and Methods Development
 Laboratory, 147
 food composition databases, 147, 258, 271, 298
 basis of data in, 284–285
 dietary supplement databases, 277
 features of, 281–285
 food component variability and, 286–287
 food groupings, 284
 food names and descriptions in, 282–284, 283b
 implications for RDNs, 287–288
 major US databases, 273–274
 missing values in, 285
 outlook for, 288–289
 special interest databases, 272, 274, 276–277, 276t
 users and uses of, 278
 food contaminant databases, 277–278
 Food Data System (FoodDS), 272
 food environment studies, 164t–167t, 174
 food frequency questionnaires (FFQs), 23, 27, 109, 251, 255
 dietary validity and, 259
item selection for, 256
semiquantitative vs quantitative, 256
food groupings, 284
food-handling practices, 513
food intake, appetite and, 339
food-handling practices, 513
food names and descriptions, 282–284
food names and synonyms, 283
Food Label and Package Survey, 162, 172
Food Patterns Equivalents Database (FPED), 162, 171, 171b, 172, 284
Food propensity questionnaire (FPQ), 258
food records or diaries, 251, 254–255
Food Safety Survey, 162
Food Safety and Inspection Service, 280
foodservice management research, 445
areas of, 446, 447
data collection for, 447–448, 448b
historical development of, 446
research design for, 449–451, 449t
research techniques in, 446–451
Food Stamp program. See Supplemental Nutrition Assistance Program (SNAP)
Food Surveys Research Group (FSRG), 171, 172, 176b
founding, from 55–56
FPED. See Food Patterns Equivalents Database
FPQ. See food propensity questionnaire
Framingham Nutrition Studies, 234
fraud, 35–36
selective reporting, 46
Fred Hutchinson Cancer Research Center Questionnaire, 256
free-living clinical nutrition studies, 135, 138
freezers, for sample storage, 325–326
FSRG. See Food Surveys Research Group
functional foods, 4
functional magnetic resonance imaging (fMRI), 341
fundraising
identifying sources of, 55–56
obtaining, 53
online resources for, 69–70
Graphical perception, 550–551, 551f
graphs, 542
characteristics of, 548–549, 549f, 550f
computer software, 546, 548
consistency in, 550
curve difference graphs, 553f
in illustrations, 546–551
types of, 548, 552f
useful, 548
GRIN. See Germplasm Resource Information Network
gross costing, 369
grounded theory, 90b, 597b
group comparison, sample size, 472–474
group interviews, 93
group-randomized trials
advantages and disadvantages of, 119
examining causation with, 119–120
statistical issues in, 119–120
GRS. See genetic risk score
Guidelines for Checking Food Composition Data, 285
Guidelines International Network: toward international standards for clinical practice guidelines, 214b
gut distention, 342
fetal microflora, 109, 312
fecal collection in studies of, 325
gut motility, 342
GWASs. See genome-wide association studies

G6PD. See glucose-6-phosphate dehydrogenase
gamma-linolenic acid, 387f
gas analysis, 319
gas chromatography (GC), 322
gas chromatography-mass spectrometry (GC-MS), 314
gastric emptying rate, 342
GC. See gas chromatography
GC-MS. See gas chromatography-mass spectrometry
gel electrophoresis, 552
gene-diet interactions
diet assessment and selection and, 393
personalized nutrition and, 394, 397
selection of genes to study for, 393–394
study design and, 389, 390–394
genes, 381, 382f
diet interactions with, 389–390, 391f–392f
genetic code, 381
genetic risk score (GRS), 393
genetic testing services, 394, 397
genetic variation, 383–384
genome, 381
HACCP. See Hazard Analysis and Critical Control Point
Handbook for Guideline Development (World Health Organization), 214b
Harris–Benedict equation, 146
Harvard Food Frequency Questionnaire, 256
Harvard School of Public Health, 47
Hawthorne effect, 111
Hazard Analysis and Critical Control Point (HACCP), 446
HBM. See health belief model
HBSC. See Health Behavior in School Aged Children
HDL-C. See high-density lipoprotein cholesterol
Health and Diet Survey, 162, 173
health assessment methods, 599
Health Behavior in School Aged Children (HBSC), 164t
health belief model (HBM), 406, 407, 407t, 408–409
Health Information Index, 176b
Health Information National Trends Survey, 173
Health Insurance Portability and Accountability Act (HIPAA), 41, 576–577
Healthcare, 329
Healthcare delivery, 329
Healthcare system, 329
health assessment and, 326
HIPAA. See Health Insurance Portability and Accountability Act
Hispanic Community Health Study/Study of Latinos, 320, 321
Histidine, 386t
histograms, 490, 492f, 493f, 544f, 551
Homescan, 164f
homogenous sampling, 91b
hormone therapy, 3
HPLC. See high-performance liquid chromatography
HuGENet™ Handbook of Systematic Reviews, 213b
human error, 35–36
human error, 35–36
human genetics, 381–383
human health, 378
human health, 378
Human Genome Project, 555
Human Microbiome Project, 555
Human Nutrition Research Information Management system, 425
human subjects
institutional review board role in protecting, 37–38
training resources for protection of, 38t
human subjects
institutional review board role in protecting, 37–38
training resources for protection of, 38t
hunger, meal size and, 337
hydrocinnamte, 388f
hyperkalemia, 351
HyperRESEARCH, 95b
hypertension, 115, 140
defining, 122
hypoglycemia, 24
hypothesis
alternative, 469–470, 484–485
defining, 10, 129, 130f
equivalent to, 129
examples for nutrition studies, 130f
null, 469–470, 484–486
primary, 129
secondary, 129
hypothesis testing
assumption of normality, 487–488
courtroom analogy, 486, 487b
e errors in, 486
logic of, 486
one-sided, 485–486
statistical significance in, 497–498
study design and statistical analysis, 484–486
two-sided, 485–486
IBD. See inflammatory bowel disease
Icahn School of Medicine, Mount Sinai, 430t
IFPS. See Infant Feeding Practices Survey
IJCME. See International Committee for Medical Journal Editors
Illinois Transdisciplinary Obesity Program (I-TOPP), 224
Illustrating Science: Standards for Publication, 548, 550
Illustrations. See also research, illustrating results
algorithms and flowcharts, 553–554
distribution maps, 552
graphs, 546–551
histograms, 490, 492f, 493f, 544f, 551
message conveyed through, 542–543
photographs, 542, 552
preparing for publication, 555–556
purposes, 542
tables, 543, 544f, 545–546, 545b
visualizing big data, 554–555
immunosassay, 318
impact evaluation measures, 61t
impact factor models, 598
incentives
in clinical nutrition studies, 143
training impacts of, 21
incidence
calculating, 76b
defining, 77b
measurement of, 75–76
incidence–prevalence bias, 110
incidence rate, 75–76
incidence ratio, 24
incidence ratio, 24
inconsistent findings among nutrition studies, 121–122
indels. See insertion–deletion variants
independent groups
with continuous data, 472–473
proportions and sample size, 474
three or more, 473
independent samples, study design and statistical analysis, 483
indirect benefits, 372
indirect calorimetry, 318–319
industry, funding from, 56
Infant Feeding Practices Survey (IFPS), 164t
inflammatory bowel disease (IBD), 12
INFOODS. See International Network of Food Data Systems
informatics, 361
information bias, 110
informed consent
components of form for, 40b
equipoise and, 45
processes for, 38, 40–41
primary, 129
secondary, 129
hypothetical bias, 110
in-house funds, 55
initial advisory meetings, 413b
insertion-deletion variants (indels), 383
Institute of Medicine
on clinical practice guidelines, 207
Food and Nutrition Board, 126, 295
Panel on Enhancing the Data Infrastructure in
Support of Food and Nutrition Programs,
Research, and Decision Making, 157
on patient-centered care, 583
surrogate outcomes report, 353
institutional funds, 55
institutional review board (IRB), 5, 36, 139, 577
application and approval process, 39f
information requested, 40b
role in protecting subjects, 37–38
insulin, appetite and, 341
insulin receptor substrate 1, 392f
insulin resistance, 3
insulin therapy, 24
intent-to-treat comparison, 21
Interagency Committee on Human Nutrition
Research, 155
interdisciplinary research
challenges, 220–221
conducting, 221–225
defining, 219, 220f
INTERHEART study, 104
INTERMAP. See International Population Study on
Macronutrients and Blood Pressure
internal validity, 357b
in appetite assessment, 334, 334b
in outcomes research, 355–357
International Association of Scientific, Technical, and
Medical Publishers, 515
International Committee for Medical Journal Editors
(IJCME), 48–49
public registry requirements, 129
International Committee of Medical Journal Editors, 560
International Food Information Council, 47, 481b
International Guidelines Library, 212, 214b
International Life Sciences Institute North America,
Fortification Committee, 298
International Network of Food Data Systems
(INFOODS), 273, 274, 289
International Nutrient Databank Directory (NDBC
Directory), 273
International Population Study on Macronutrients and
Blood Pressure (INTERMAP), 114
International Scientific Institute (ISI), 516, 517t
International Study of Salt and Blood Pressure
(INterSALT), 113
interval measurement, 243
intervention development, 413b
interventions. See also nutritional intervention
community impacts of, 598
environmental, 411
flow from concept to evaluation of, 409f
lifestyle, 582
in randomized controlled trials, 18
in research proposals, 60–61
intervention studies, of gene-diet interactions, 392
interviews, 92
computer-assisted, 241
for nutrition and dietetics education research, 459
structured, 11, 12
unstructured, 11
introns, 381
iodine deficiency, 279
iodized salt, 279
Iowa State University (ISU), 304, 308
IRB. See institutional review board
iron, 385t, 386f, 438t
irresponsible authorship, 562–563
irritable bowel syndrome, 19
ISI. See International Scientific Institute
isoflavones, 276, 276f, 318
isothiocyanates, 438f
ISU. See Iowa State University
I-TOPP. See Illinois Transdisciplinary Obesity Program

J
Joanna Briggs Institute, 213b
journal articles. See also research articles; research
reports
abstracts, 519, 520f
for research dissemination, 515–519, 521–522
selecting journal, 515
Journal Citation Reports, 516
Journal of Food Composition and Analysis, 289
Journal of Foodservice Management and Education, 560
Journal of Nutrition, The, 516
Journal of Nutrition Education and Behavior, 516
Journal of Parenteral and Enteral Nutrition, 517t
Journal of the Academy of Nutrition and Dietetics, 210,
462, 516–517, 517t, 518, 560, 564, 565
Journal of the American Dietetic Association, 446, 456
journals. See also specific journals
predatory, 561b
publication access, 517–518
selecting for research reports, 515–517
selection of, 517
writers choosing, 560, 561b

K
key messages, 514
Kidney Disease–Improving Global Outcomes, 581
kitchens, in foodservice, 423f
knowledge constraints, 586
knowledge dissemination, 513–514
Kouba, Joanne, 524

L
labor minutes per meal equivalent, 13
lactase, 391f
LanguaL, 282, 284
Latin square design, 335, 336b
LC. See liquid chromatography
LC-MS. See liquid chromatography-mass spectrometry
LD. See linkage disequilibrium
LD blocks, 383
LDL-C. See low-density lipoprotein cholesterol
lead, 388f
lead analysts, 211b
leadership tasks, 221
Learning Styles Inventory, 459
least publishable units (LPUs), 46, 47
leptin, 341
leucine, 386f
leukocyte collection, 324
level of evidence, 439
level of statistical significance, 489
librarians, 212
lifestyle interventions, 582
lignans, 317
Lind, James, 3
linear regression, 505, 506
linkage disequilibrium (LD), 383
linolenic acid, 387
lipidomics, 314
liquid chromatography (LC), 322
liquid chromatography-mass spectrometry (LC-MS), 314, 320
literature
 critical evaluation of, 565
 professional and research, 571–572, 572b, 579
 reader's evaluation, 564–565
 literature search, 584–585
 for evidence-based dietetic practice reviews, 196
logic
 of hypothesis testing, 486
 of sample size calculations, 469–470
logistic regression methods, 499
long-term biomarkers, 314
low-density lipoprotein cholesterol (LDL-C), 353–354
LPUs. See least publishable units
lung cancer, 109
lycopene, 388
lysine, 386
M
macrocosting, 369
macronutrient intake
 assessing, 307, 315t
 biomarkers for, 315t
magnesium, 299t, 301f, 386t, 438t
magnetic resonance imaging (MRI), 341, 342
mailed surveys, 241
Male Health Professionals Follow-Up Study, 256
manganese, 386t
mannose, 388t
manuscript body, research reports, 521
manuscript preparation, 559–560
manuscript submission, 561
mass spectrometry (MS), 314, 322. See also gas chromatography-mass spectrometry; liquid chromatography-mass spectrometry
matching samples, study design and statistical analysis, 483
mathematical modeling, 449t
 for foodservice management research, 451
maximum variation sampling, 91b
MAXQDA, 95b
mean hemoglobin A1c, 503b, 504t
measurement errors, 44
 in analytic nutrition epidemiology studies, 110
 causation criteria and, 106
 in dietary intake, 261–262
measurements
 appetite research methodologies of, 337–342
 of association, 104, 104b
 bias from, 44
 degrees of uncertainty, 495–496
demographic, 81–82
energy expenditure, 319
 of incidence, 75–76
 interval, 243
nutrition monitoring and, 157, 158t–159t, 166–169
 of poor exposure, 110
 of prevalence, 76–77
 ratio, 243–244
replicating, 484, 485f
of respiratory gases, 319
satiation, 335–337
safety, 337
scale of, 481–483, 482f
serial/repeat, 483–484, 485f
surveys and strategies for, 242–243
 of vital statistics, 81–82
measures
 of central location, 494
 relative risk, 499
 of variation, 494
Medicaid, 166, 373
medical nutrition therapy (MNT), 195
cost-effectiveness research on, 361
Medicare, 166, 373
Mediterranean-style diet (MedSD), 16, 108, 582
medium-term biomarkers, 314
MEDLINE, 176
Medscape Drug Interaction Checker, 431
MEDSD. See Mediterranean-style diet
membrane phospholipids, fatty acid composition of, 317
Mental Measurement Yearbooks, 459
MenuStat, 166t
MEQ, See mindful eating questionnaire
messages
 illustrations conveying, 542–543
 key, 514
messenger RNA (mRNA), 382
Meta-analysis of Observational Studies in Epidemiology (MOOSE), 46, 214b
metabolic phenotyping, 323
metabolic rate, basal, 262
metabolic studies, adherence in, 144–145
metabolic syndrome, 105, 115, 477
metabolism
 bone, 581
 oxidative, 318
metabolomics, 109, 312, 314
 dietary biomarkers and, 322–323
Methodological standards for the conduct of new Cochrane Intervention Reviews, 213b
methylene tetrahydrofolate reductase (MTHFR), 391t
microbiome
 biomarkers and, 312
 fecal collection in studies of, 325
 glucose intolerance and, 115
microcosting, 369
Minfin-St Jeor equation, 146
mindful eating questionnaire (MEQ), 77–78
minerals, 385f–386t
Minnesota Nutrition Data System, 258
MNT. See medical nutrition therapy
modeling, 411
Modification of Diet in Renal Disease study, 115
MOOSE. See Meta-analysis of Observational Studies in Epidemiology
motivation, food records and, 254–255
MRI. See magnetic resonance imaging
mRNA. See messenger RNA
MS. See mass spectrometry
MTHFR. See methylenetetrahydrofolate reductase
multicenter randomized controlled trials advantages of, 120
disadvantages of, 121
examining causation with, 120–121
multidisciplinary research, 217
challenges, 220–221
communication in, 223–224
conducting, 221–225
decisions in, 223
defining, 219, 220f
impediments of
National Institutes of Health and, 219, 221–222
personal characteristics enhancing, 223
rewards of, 219–220
strategies for, 223–225, 224f
multiple comparisons, 489
Multiple Risk Factor Intervention Trial, 115
multistage probability sampling, 179, 308
multivariate Cox proportional hazards regression, 115
multivariate relationships, of diet and disease, 112
MyPlate, 284, 300
My Pyramid Equivalents Database, 172
myristoleate, 387f

N
narratives, 90f
National Academy of Medicine, 280, 295
National Academy of Sciences, 127
nutrition monitoring symposium by, 155
National Agricultural Library, 272, 274
National Cancer Institute, 539
Division of Cancer Prevention, 525
National Data on Food Intakes, 176f
National Cancer Institute (NCI), 5, 58
on behavior theory-based research, 406
brief assessment tool registry, 258
dietary assessment instrument comparison by, 257f
Dietary Assessment Primer, 255
Dietary Screener Questionnaire, 166
Diet Assessment Primer Roadmap, 251, 252f
Diet History Questionnaire, 256
Food Attitudes and Behaviors Survey, 173
food environment studies by, 174
intake distribution estimation method, 304, 308
nutrition monitoring by, 173
National Cancer Institute Measurement Error Webinar series, 128f
National Center for Advancing Translational Research, 592
National Center for Chronic Disease Prevention & Health Promotion, 176f
National Center for Complementary and Integrative Health (NCCIH), 429, 430f, 431, 435
National Center for Environmental Health, 176f
National Center for Health Statistics (NCHS), 82, 158f, 169, 176f, 274, 277, 308
National Health Survey by, 373
National Collaborative on Childhood Obesity Research (NCCOR), 81, 157, 176f
National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, 37
National Death Index, 166
National Food and Nutrient Analysis Program, 170, 171, 278
National Food Consumption Survey, 80
National Forest Service, 164f
National Health and Medical Research Council, 214f
National Health and Nutrition Examination Survey (NHANES), 5, 10, 80, 81, 104, 113, 154, 156b, 157, 158f, 176f, 230
24-hour recalls in, 253
clustered design in, 179
dietary supplement data from, 424
Dietary Supplement Ingredient Database and, 172
folate status data from, 170f
food and nutrient intake assessment in, 274, 308
linkages to other data, 166–167, 170
obesity findings, 77
What We Eat in America and, 169, 231
National Health Care Surveys, 158f, 169
National Health Interview Survey (NHIS), 158f, 166
dietary supplement data from, 425
National Health Survey, 373
National Heart, Lung, and Blood Institute (NHLBI), 232, 234
National Institute for Food and Agriculture, 219
National Institute of Allergy and Infectious Diseases, 58
National Institute of Child Health and Human Development, 323
National Institute of Diabetes, Digestive and Kidney Diseases, 575
National Institute of Standards and Technology, 326
dietary supplement standards by, 431
National Institutes of Health (NIH), 4, 18, 289
funding from, 56, 56f
as information source, 176f
multidisciplinarity and, 219, 221–222
noncoverage errors prevention and, 43
nutrition research and, 575
Nutrition Research Task Force, 156
Office of Dietary Supplements, 176f, 277, 425
Office of Extramural Research Protecting Human Research Participants, 38f
Office of Nutrition Research, 176f
proposal review criteria, 57f
research application sections, 58
research strategy, 59–63
specific aims, 58–59
US National Library of Medicine and, 9
National Kidney Foundation, 581
National Marine Fisheries Service, 173, 176f
National Nutrient Database for Standard Reference (SR), 171, 171b, 272–274
National Nutrition Monitoring and Related Research Program (NNMRRP), 154, 230, 231
National Nutrition Monitoring System, 251
National Nutrition Research Agenda, 575
National Nutrition Research Roadmap, 155–156
National Research Council (NRC), 304
National School Lunch Program, 169
National Science Foundation, 56, 431
National Survey of Family Growth (NSFG), 158f, 166
National Survey of Recreation and the Environment, 164
National Survey of Family Growth (NSFG), 158f, 166
National Vital Registration System, 158f
National Vital Statistics System, 82
Natural Medicine database, 431f
NCCIH. See National Center for Complementary and Integrative Health
NCHS. See National Center for Health Statistics
NCI. See National Cancer Institute
energy requirements and, 146
implementation strategies for, 146
nutrition and dietetics education research
categories of, 457
data collection for, 457–461
future needs for, 461–462
levels of, 461
types of methods in explanatory, 461b
nutrition assessment
biological measures in, 313–314
blood markers for, 316
Nutrition Care Process (NCP), 194
outcomes research and, 359, 361
Nutrition Data System—Research software, 599
nutrition epidemiology, 102
Nutrition Evidence Library, 6
Nutrition Facts label, 173, 272, 280
Nutrition Frontiers newsletter, 525
nutrition informatics, 361
Nutrition Labeling Education Act, 274
nutrition monitoring, 153
components of, 157, 158–167f, 166–174
food and nutrient consumption, 160f–161f, 169–170
food composition, nutrient, food patterns, and
supplemental databases, 160f–163f, 170–172
food environment and policy data, 164f–167f, 174
food supply determinations, 164f–165f, 173–174
gaps in, 174
knowledge, attitudes, and behavioral
assessments, 162f–165f, 172–173
nutrition and related health measurements, 157, 158f–159f, 166–169
overview and history in United States of, 154–156
resources for researchers, 174–177
secondary analysis of data from, 177–180
starting research studies with, 180–181
uses and value of data from, 156
Nutrition Practice Guidelines, 193
nutrition research
biomarkers in, 323–326
ecological framework for planning, 232, 233b, 234
federal information sources on, 176b
forces driving, 3–6
Nutrition Research Information, 575
Nutrition Research Network (NRN), 361, 572, 573, 575, 583
Nutrition Research Task Force, 156
Nutrition Reviews, 517
nutrition studies, 498
inconsistent findings among, 121–122
NVivo, 95b

O

obesity, 389
cardiovascular disease and, 112
prevalence among children and adolescents, 77
statistics of, 493, 493t
objectives
of clinical nutrition research, 129, 130f
of economic analysis, 366, 368
research, 10
study, 129
observational study designs
advantages and disadvantages, 113t
cross-sectional studies, 113
gene-diet interactions, 390, 392
for nutrition and dietetics education research, 457, 458, 460–461
observations, 92
chance, 46
paired, 474–475
observation techniques, 448, 461
Observing Protein and Energy Nutrition (OPEN), 260
odds ratio, 104, 104b, 499
Office of Dietary Supplements (ODS), 176, 277, 425, 431
Office of Extramural Research Protecting Human Research Participants, 38f
Office of Nutrition Research, 176b
oleic acid, 387t
OmniHeat Study, 145
one-sided hypothesis tests, 485–486
OPEN, See Observing Protein and Energy Nutrition open-circuit calorimetry, 319
open-ended questions, 242, 243b
Open Epi, 478
opportunity cost, 361
ordinal variables, 243, 244f, 482, 482f
organizational publications, research, written, 522–523, 524f
osteoporosis, 520f
outcome assessment, 413b
outcomes
cost-effectiveness analysis, 371–372
chain of, from weight management programs, 354, 356f
cost, 354–355
in dietary supplement research, 437–439
economic analysis of, 371–374
patient-centered, 352–353
primary variables, 407
relating costs to, with ratios, 374
surrogate, 353–354, 353f, 355f
outcomes registry, 358
outcomes research
in evidence-based practice research cycle, 351, 351f
internal validity in, 355–357
methods for, 355–359, 361
nutrition care process and, 359, 361
nutrition informatics and, 361
planning and conducting, 360b
prospective studies for, 24–25
research questions for, 360b
results of, 359
study design for, 360b
study implementation, 359
types of outcomes, 352–355, 352f
outliers, 490, 491f
overmatching, 116
oxalic acid, 276
oxidative metabolism, 318

P
P value, 486
PABA. See para-aminobenzoic acid
PAH. See phenylalanine hydroxylase
paired continuous data, sample size for, 471–472
paired observations, sample size and
proportions, 474–475
paired t test, 471–472
pairing samples, study design and statistical analysis, 483
palmitic acid, 387t
palmitoleic acid, 388f
Panel on Enhancing the Data Infrastructure in Support of Food and Nutrition Programs, Research, and Decision Making, 157
pantothenate, 385t
para-aminobenzoic acid (PABA), 325
parallel-arm study, 335, 336b
parallel randomized controlled trials, 131–132, 131f
parametric statistical tests, 489f
parental consent, 600, 600b
parenteral nutrition (PN), 24
partially controlled study designs, 22
participant deception, in appetite research, 334–335
participant monitoring, in clinical nutrition studies, 143–144
participant recruitment
for appetite research, 332–333
for clinical nutrition studies, 141
for dietary supplement research, 434
homogeneity in, 434
participant retention, in clinical nutrition studies, 144–145
participant sampling, in qualitative research, 89–92
participant screening, for clinical nutrition studies, 141–142
participant selection
for case series studies, 12
for clinical nutrition research, 139–140
for cohort studies, 24
for prospective studies, 24
for qualitative research, 11
for randomized controlled trials, 16–17
for surveys, 14–15
participatory action research, 90b
partnerships, 413b
for community presentations, 536
PASS sample size calculator, 478b
Pathway Genomics, 394
patient-centered care, research to improve quality of, 583–584
patient-centered outcomes, 352–353
Patient-Centered Outcomes Research Institute, 352
patient identifiers, 41, 42b
Patient Protection and Affordable Care Act of 2010, 352
Pediatric Nutrition Surveillance System (PedNSS), 158, 167, 168
Pediatrics, 517t
PedNSS, See Pediatric Nutrition Surveillance System peer review, 563, 564
Pennington Biomedical Research Center, 430t
pentadecanoic acid, 318
peptide YY, 340–341
perceived severity, 406, 408
perceived susceptibility, 408
period prevalence, 76
defining, 77b
personal career development, 572, 573b
personalized nutrition, 394, 397
PET. See positron-emitting tomography
phenomenology, 90b, 597b
phenylalanine, 387t
phenylalanine hydroxylase (PAH), 391t
phenylketonuria, 390
PHI. See protected health information
Philadelphia Collaborative Violence Prevention Center, 539
phosphate, 312
phosphorus, 386, 581
photographs, 542, 552
PICO. See population, intervention, comparator, and outcome
PICU. See pediatric intensive care
pilot studies, 4–5
placebos, in dietary supplement research, 435, 436
plagiarism, 36
planned behavior, 407
planning
ecological frameworks for, 232, 233b, 234
for outcomes research, 360b
for survey research, 234–238
for webinars, 537–538, 538b
plant-based diets, biomarkers of, 317
plasma biomarkers, 314b
plasma carotenoids, 315, 316b
plasma collection, 324
plasma glucose, eating behavior and, 339–340
plasma retinol, 313
plotting data, in statistical analysis, 490, 491b
f
PLP. See pyridoxal 5'-phosphate
PN. See parenteral nutrition
PNSS. See Pregnancy Nutrition Surveillance System
podium presentations
abstracts for, 531
delivering, 534–535
oral components, 532, 534
preparing, 531–532
professional conference selection, 530–531
proposal and abstract submission, 531
slide organization, 533b
visual components, 532, 533b
Poehlman, Eric, 34–35
point prevalence, 76
defining, 77b
policy briefs, 525
polymorphisms, 383
polyphenol intakes, 317
biomarkers of, 318
polyphenols, 438b
population, intervention, comparator, and outcome
(PICO), 6, 194
population attributable risk, 104
population coverage, nutrition survey and surveillance data and, 178–179
population sampling, survey design and, 237–238
population values estimate
confidence interval and, 496–497
measuring degrees of uncertainty, 495–496
standard error, 495–496
statistical analysis, 495–497
using samples, 495
portion control, 580
positron-emitting tomography (PET), 341
poster development, 527, 529, 530b
poster presentations, 526, 526f
abstract submission, 527, 528f
exhibit sessions, 529–530, 530b
preparing, 527, 528f, 529
software for, 527–529
postprandial studies, 138
potassium, 303r
biomarkers for, 320
blood pressure and, 108
potency, 424f
potentially excessive intakes, prevalence of, 306
PP4H. See Proviso Partners for Health
practice-based research, 128, 575, 582–583
disseminating, 585, 585b
practice questions, 584
Pragmatic-Explanatory Continuum Indicator Summary 2 (PRECIS-2), 357, 358, 358b
pragmatic trials, 357–358
PRAMS. See Pregnancy Nutrition Surveillance System
prebiotics, 4
preclinical studies, 490–491
precipitation, 38, 39
preconditioning, 324
predictive value, 78–79, 79f, 80f
PREDIMED. See Prevencion con Dieta Mediterranea
preexperimental designs, for foodservice management research, 450–451
preexperimental research design, 449t
Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), 46, 197, 210
Pregnancy Nutrition Surveillance System (PNSS), 104, 158f, 167
Pregnancy Nutrition Surveillance System (PNSS), 104, 158f, 167
Pregnancy Risk Assessment Monitoring System (PRAMS), 162f
press releases, 525
pretesting, 236, 245
prevalence, 80f
of adequacy/inadequacy, 304–305
measurement of, 76–77
period, 76, 77b
point, 76, 77b
of potentially excessive intakes, 306
Prevencion con Dieta Mediterranea (PREDIMED), 45, 121
Prevention Research Centers, 176b
primary hypothesis, 129
primary outcome variables, 407
PRISMA. See Preferred Reporting Items for Systematic Reviews and Meta-analyses
privacy, 41–42
proanthocyanidins, 276, 276f
probability
confidence interval and, 496
interpreting statistical values of, 498
normal curve and, 301
nutrient inadequacy estimation using, 305, 306
P value and, 486
sample size and, 469–471
statistical significance and, 498
type II error and, 470
probability sampling, 15
area, 179
defining, 237b
multistage, 179, 308
probiotics, 4
processes of change, 412, 414
professional career development, 572, 573b
professional conferences, 525
professional literature
reading, 571–572
research method knowledge and, 579
tips for keeping up with, 572b
professional organizations, funding from, 55
progesterin, 3
Project EAT survey, 61t
proline, 387f
propensity scoring, 359
proposal review process, 56–58
prospective studies
 exposure status assessment, 24
 features of, 24
 outcome assessment, 24–25
 participant selection, 24
 registry, 358
 statistical analysis and interpretation, 25
 uses of, 22–23
protected health information (PHI), 41, 577
protein intake, biomarkers for, 320
proteomics, 314
Proviso Partners for Health (PP4H), 524
publication. See also journals; research publications
 ethics in, 47
 formatting for, 555–556
public health, economic analysis and, 376
Public Health Nutrition, 516, 517
public research registries, 46, 129
PubMed, 176
purposeful sampling, 91b
purposive sampling, 596
pyridoxal 5’-phosphate (PLP), 312
pyridoxal-phosphate, 385
Q
QA. See quality assurance
QALYs. See quality-adjusted life years
QDA Miner, 95b
QEWP, 64f
QI. See quality improvement
QUADAS-2, 214
qualifying statements, 244–245
qualitative data analysis, 93–96
qualitative research, 11–12
 community-based, 596–597
 data collection for, 89–93 defining, 85
 evaluating, 96–97
 examples of approaches for, 87b
 limitations and concerns with, 97
 participant sampling in, 89–92
 quantitative research compared with, 85–86, 86b
 reasons to do, 87–89
 reporting, 96
 research designs for, 89, 90b
 sampling methods for, 90, 91b
 strategies for, 597b
 trustworthiness criteria for, 597
quality-adjusted life years (QALYs), 365–366, 365b
quality assurance (QA), in biomarker studies, 326
Quality Criteria Checklist, 197, 199, 200f–203f, 579
quality improvement (QI), 583–584
 in clinical nutrition research, 147–148, 149f
 procedures for, 149f
 projects for, 129
Quality of Reports of Meta-Analyses of Randomized Controlled Trials (QUOROM), 210
quantitative food frequency questionnaires, 256
quantitative research, 84
 community-based, 597–599
 qualitative research compared with, 85–86, 86b
 quasi-experimental designs, 22, 449f, 594, 595f
 for foodservice management research, 451
questionnaires. See also food frequency questionnaires
 accuracy of data collection with, 458
 administration of, 240, 241
 appetite, 337–339
 Block, 256
 design for survey research, 239, 242–245
 Dietary Screener Questionnaire, 166
 food propensity questionnaire, 258
 mindful eating questionnaire, 77–78
 for nutrition and dietetics education research, 457–458
 self-administered, 241
 question ordering, 245
Quirkos, 95b
QUOROM. See Quality of Reports of Meta-Analyses of Randomized Controlled Trials
R
R (software), 179
RACC. See reference amount customarily consumed
RAE. See retinol activity equivalent
RALES. See Randomized Aldactone Evaluation Study
random assignment, 335, 336b
random error, 147
defining, 321b
Randomized Aldactone Evaluation Study (RALES), 350–351, 356–357
randomized controlled trials (RCTs), 413b
 assigning treatment groups, 18–20
 in clinical nutrition studies, 131
 data collection for, 20
 for dietary supplements, 427–428
 end points, 20
 examining causation with, 118–121
 factorial design, 21, 22
 features of, 16
 intervention or treatment selection, 18
 multicenter, 120–121
 parallel, 131–132, 131f
 participant selection, 16–17
 sample size, 20
 statistical analysis and interpretation, 21
 uses of, 16
random sampling, defining, 237b
rate of carbon dioxide production (VCO2), 318
rate of gastric emptying, 342
rate of oxygen consumption (VO2), 318
ratio measurement, 243–244
ratios, relating costs to outcomes with, 374
RCTs. See randomized controlled trials
RDA. See Recommended Dietary Allowance
RDNs. See Registered Dietitian Nutritionists
reactivity, food records and, 254
readers
 critical evaluation of literature, 565
 keeping current, 565–566
 literature evaluation, 564–565
Readiness for Interprofessional Scale, 459
recall bias, 390
receiver operating characteristic (ROC), 5
reciprocal determinism, 410–412
RECIST. See Response Evaluation Criteria in Solid Tumors
Recommendations for the Conduct, Reporting, Editing and Publication of Scholarly Work in Medical Journals, 559
recommendation statements, 208, 208f
Recommended Dietary Allowance (RDA), 296, 300–302
recovery biomarkers, 262
REE. See resting energy expenditure
reference amount customarily consumed (RACC), 274
refrigeration, for sample storage, 325–326
Registered Dietitian Nutritionists (RDNs), 3, 9, 10, 278
activities for career development, 572, 573
dietary intake assessment by, 300
dietary supplement research and, 426
food composition database implications for, 287–288
formal education of, 456
journal publications, 516
research priorities and opportunities and, 572–576
research uses to, 571
reviews for, 566
registry studies, 358
regression analysis, 504–506, 506b
linear, 505, 506b, 507b
logistic, 499
multivariate Cox proportional hazards, 115
relationships
between constructs, 408
dose-response, 106
estimating, 499, 502–507
multivariate, 112
among samples, 483–484
of two continuous variables, 494–495
relative risk, 24, 104, 104b, 105, 105f
relative risk measure, 499
reliability, 77–78, 245, 246f
replicating measurements, 484, 485f
reporting guidelines, 46
reports. See research reports
reproducibility, of DRIs, 259
research
advancing, 6
aims of, 458b
applying to practice, 576–577
to change practice, 581
cycle of, in practice, 577–579
defining problem for, 584–585
to document effectiveness, 581–582
in ethical climate, 49–50
illustrating results, 541–542
message, 542–543
purpose, 542
importance in practice of, 571
to improve quality of patient-centered care, 583–584
knowledge constraints in, 586
to observe and alter practice, 580
overcoming barriers to quality in, 586–588
priorities and opportunities in, 572–576
in problem solving, 579–580
progression towards evidence of, 427–428, 428f
role in practice, 573
selecting topic for, 9
to solve practice problems, 582–583
time and other constraints in, 587
translational, 574, 592–593, 593f, 594b
turning barrier into opportunities in, 587–588
written
newsletters, 523, 525
organizational publications, 522–523, 524f
policy briefs, 525
press releases, 525
research articles, 518
research briefs, 522
research designs
for analytic nutrition epidemiology, 112–121
for associations, 104–105
for causation, 107
for clinical nutrition studies, 131–135, 138
for community-based research, 593–594, 595f, 596
for dietetic supplement research, 432–439
for foodservice management research, 449–451, 449f
for qualitative research, 89, 90b
Research Dietetic Practice Group, 574
research dissemination
audiences for, 513
community presentations for, 536–537
electronic presentations for, 537–539
journal articles, 515–519, 521–522
novel approaches, 539
plans for, 514–515
podium presentations, 530–532, 533b, 534–535
poster presentations, 526–527, 526f, 528f, 529–530
professional conferences, 525
purposes of, 513–514
reports, 515
roundtable presentations, 535–536, 535b
web seminars, 537–539, 538f
written, 512–525
research error, 35–36
Research Ethics for the Registered Dietitian Nutritionist, 38f
research findings, 512–513
Research Grant Program, 56t
research ideas, developing as fundable research plan, 54–55
research literature
reading, 571–572
research method knowledge and, 579
for keeping up with, 572b
research objectives, 10
research plans
adhering to, 67
developing ideas to, 54–55
Research Project Cooperative Agreement, 56f
research proposals. See also grant proposals
adhering to, 67
composing strong, 58–66
data analysis in, 61–62
data collection in, 61
interventions in, 60–61
other project information, 63–65
research strategy, 59–63
revising unfunded, 67–68
specific aims in, 58–59
statistical analysis in, 62–63
research protocols, preparing, 4
research publications
reader's perspective, 564–566, 565b
to reviewer's perspective, 563–564, 563b
writing as fundable research plan, 54–55
research questions
in analytic nutrition epidemiology, 107–108
for dietetic practice research, 180
for foodservice management research, 449–451, 449f
for qualitative research, 89, 90b
sources of, 128–129
stating, 10–11
study design and statistical analysis, 481
research reports, 515
 abstracts, 519, 520f
 author checklists, 522
 journal selection, 515–517
 manuscript body, 521
 original, 518–519
 publication access, 517–518
 supplementary materials, 522
 tables and figures, 521–522, 523f
 titles, 519
research strategy
 appendix materials, 65
 approach, 59–62
 budget, 65–66, 66b
 innovation, 59
 significance, 59
 statistical analysis, 62–63
 summary and future directions, 63
 theoretical framework, 62, 63f
 timeline, 62, 64f
research studies
 designing, 9–11
 preparing for, 9–10
 registering in public registries, 46
Research to Reality, 539
respiratory gases, measuring, 319
respiratory quotient (RQ), 318–319
Response Evaluation Criteria in Solid Tumors (RECIST), 432
response rates, nutrition survey and surveillance data and, 178–179
resting energy expenditure (REE), 318–319
retinol, plasma levels of, 313
retinol activity equivalent (RAE), 298
reviewers
 challenges of peer, 564
 of research publications, 563–564, 563b
riboflavin, 303f
ribonucleic acid (RNA), 381–382
ribosomal RNA, 382
risk
 attributable, 104
 genetic risk score, 393
 genetic testing services and, 397
 relative, 24, 104, 104b, 105, 105f
 youth behavior, 173
risk difference, 104
RNA. See ribonucleic acid
Robert Wood Johnson Foundation, 55
ROC. See receiver operating characteristic
roundtable presentations
 delivery of, 535–536
 preparation, 535
 sample questions, 535, 535b
RQ. See respiratory quotient
S
Safe Harbor method, 41, 42b
salt intake, blood pressure and, 106, 114
sample collection, biomarkers and considerations for, 323–325
samples
 evaluating differences between, 500f, 503
 matching, 483
 population values estimate using, 495
relationships among, 483–484
sample size, 468–469
 case-control studies, 475–476
 clinical and statistical significance, 477
 for clinical nutrition studies, 140–141
 cohort studies, 476–477
 complex situations, 477
 in dietary supplement research, 434–435
 group comparison with continuous data, 472–474
 independent groups and proportions, 474
 paired observed proportions, 474–475
 in randomized controlled trials, 20
 restrictions of, 470
software and websites for determining, 477, 478b
 for specific research situations, 471–477
sample size calculations
 alternative hypothesis, 469–470
 general procedure, 470–471
 logic, 469–470
 software and websites, 477, 478b
sample storage, 325–326
sample weights, nutrition survey and surveillance data and, 179
sampling
 cluster, 237b, 308
 multistage probability, 179, 308
 nonprobability, 596
 probability, 15, 179, 237b, 308
 purposive, 596
 for qualitative research, 89–92, 91b
 random, 147, 237b
 survey design and, 237–238
sampling bias, 43
 nutrition survey and surveillance data and, 178–179
sampling errors, 43
SAS, 179
satiation measurement, 335–337
satiety measurement, 337
scale of measurement
 study design and statistical analysis, 481–483
 variables, 481–482, 482f
Scantrack, 174
scatterplots, 490, 491f
SCD. See Specific Carbohydrate Diet
School Breakfast Program, 169
School Health Policies and Practices Study (SHPPS), 164, 174
School Nutrition Dietary Assessment (SNDA), 164f, 169, 174
Scientific Affairs and Research Staff, 211f
screeners, 258
SCT. See social cognitive theory
scurvy, 3
SD. See standard deviation
search plans, 196, 198f
secondary hypothesis, 129
SELECT. See Selenium and Vitamin E Cancer Prevention trial
selection bias, 21, 357, 390
selective reporting, 46
selective sampling, 91f
selenium, 313, 386f, 438f
Selenium and Vitamin E Cancer Prevention trial (SELECT), 131, 133
self-administered mailed or web-based surveys, 241
self-administered questionnaires, 241
self-changers, 413
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>self-efficacy</td>
<td>410, 412, 414</td>
</tr>
<tr>
<td>self-reported intake reporting</td>
<td>412–415</td>
</tr>
<tr>
<td>biomarker calibration</td>
<td>412–415</td>
</tr>
<tr>
<td>for dietary supplement research</td>
<td>437</td>
</tr>
<tr>
<td>self-reporting</td>
<td>448f</td>
</tr>
<tr>
<td>SEM. See social ecological model</td>
<td></td>
</tr>
<tr>
<td>semiquantitative food frequency questionnaires</td>
<td>256</td>
</tr>
<tr>
<td>sensitivity</td>
<td>5–6, 78, 78f</td>
</tr>
<tr>
<td>sensitivity analysis</td>
<td>375</td>
</tr>
<tr>
<td>serial/repeat measurements</td>
<td>485f</td>
</tr>
<tr>
<td>study design and statistical analysis</td>
<td>483–484</td>
</tr>
<tr>
<td>serum calcium</td>
<td>581</td>
</tr>
<tr>
<td>serum carotenoids, smoking and</td>
<td>112</td>
</tr>
<tr>
<td>serum phosphorus</td>
<td>581</td>
</tr>
<tr>
<td>Shape Up Somerville</td>
<td>411, 413b</td>
</tr>
<tr>
<td>short-term biomarkers</td>
<td>314b</td>
</tr>
<tr>
<td>SHPPS. See School Health Policies and Practices Study SIDs.</td>
<td></td>
</tr>
<tr>
<td>SIGN 50: A Guideline Developers Handbook</td>
<td>214b</td>
</tr>
<tr>
<td>Simon Fraser University</td>
<td>430</td>
</tr>
<tr>
<td>simulations</td>
<td></td>
</tr>
<tr>
<td>for foodservice management research</td>
<td>451</td>
</tr>
<tr>
<td>research design</td>
<td>449f</td>
</tr>
<tr>
<td>single nucleotide polymorphisms (SNPs)</td>
<td>383, 384</td>
</tr>
<tr>
<td>SIPP. See Survey of Income and Program Participation</td>
<td></td>
</tr>
<tr>
<td>SKP. See Synergistic Theory and Research on Obesity and Nutrition Group Kids Program</td>
<td></td>
</tr>
<tr>
<td>SLAITS. See State and Local Area Integrated Telephone Survey</td>
<td></td>
</tr>
<tr>
<td>Small Grant Program</td>
<td>56t</td>
</tr>
<tr>
<td>Smart Visits</td>
<td>575</td>
</tr>
<tr>
<td>smoking</td>
<td></td>
</tr>
<tr>
<td>biomarkers and</td>
<td>313</td>
</tr>
<tr>
<td>cessation of</td>
<td>413</td>
</tr>
<tr>
<td>serum carotenoids and smoking and</td>
<td>112</td>
</tr>
<tr>
<td>SNAP. See Supplemental Nutrition Assistance Program</td>
<td></td>
</tr>
<tr>
<td>SNDA. See School Nutrition Dietary Assessment</td>
<td></td>
</tr>
<tr>
<td>snowball sampling</td>
<td>91b</td>
</tr>
<tr>
<td>SNPs. See single nucleotide polymorphisms</td>
<td></td>
</tr>
<tr>
<td>social cognitive theory (SCT)</td>
<td>407, 407f, 410–412, 413b</td>
</tr>
<tr>
<td>social ecological model (SEM)</td>
<td>410–412</td>
</tr>
<tr>
<td>social marketing</td>
<td>406</td>
</tr>
<tr>
<td>Social Security Administration</td>
<td>166</td>
</tr>
<tr>
<td>sodium</td>
<td></td>
</tr>
<tr>
<td>biomarkers for</td>
<td>320</td>
</tr>
<tr>
<td>variability among brands</td>
<td>286f</td>
</tr>
<tr>
<td>software</td>
<td></td>
</tr>
<tr>
<td>computer graphics</td>
<td>546, 548</td>
</tr>
<tr>
<td>to determine sample size</td>
<td>477, 478b</td>
</tr>
<tr>
<td>Nutrition Data System-Research</td>
<td>599</td>
</tr>
<tr>
<td>for poster presentations</td>
<td>527–529</td>
</tr>
<tr>
<td>somatic mutations</td>
<td>383</td>
</tr>
<tr>
<td>soybeans, isoflavones from</td>
<td>318</td>
</tr>
<tr>
<td>Special Interest Databases (SIDs),</td>
<td>272, 274, 276–277, 276t</td>
</tr>
<tr>
<td>Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), 167, 168</td>
<td></td>
</tr>
<tr>
<td>specific aims</td>
<td>58–59</td>
</tr>
<tr>
<td>Specific Carbohydrate Diet (SCD),</td>
<td>12, 81</td>
</tr>
<tr>
<td>specificity</td>
<td>5–6, 78, 78f</td>
</tr>
<tr>
<td>spironolactone</td>
<td>350–351</td>
</tr>
<tr>
<td>SPSS Sample Power 3</td>
<td>478b</td>
</tr>
<tr>
<td>SR. See National Nutrient Database for Standard Reference</td>
<td></td>
</tr>
<tr>
<td>SR-Legacy database</td>
<td>171</td>
</tr>
<tr>
<td>SSB. See sugar-sweetened beverage</td>
<td></td>
</tr>
<tr>
<td>stacked bar graph</td>
<td>552f</td>
</tr>
<tr>
<td>stages of change</td>
<td>412–415, 414f</td>
</tr>
<tr>
<td>standard deviation (SD)</td>
<td>471</td>
</tr>
<tr>
<td>population values estimate</td>
<td>495–496, 496f</td>
</tr>
<tr>
<td>standard error</td>
<td>495–496, 496f</td>
</tr>
<tr>
<td>standardized tests</td>
<td>458–459</td>
</tr>
<tr>
<td>Standards for the Reporting of Diagnostic Accuracy Studies (STARD), 214b</td>
<td></td>
</tr>
<tr>
<td>STATA.</td>
<td>179</td>
</tr>
<tr>
<td>State and Local Area Integrated Telephone Survey (SLAITS), 158t</td>
<td></td>
</tr>
<tr>
<td>statistical analysis</td>
<td></td>
</tr>
<tr>
<td>See also summary statistics</td>
<td></td>
</tr>
<tr>
<td>for appetite research</td>
<td>335</td>
</tr>
<tr>
<td>assumption of normality</td>
<td>487–488</td>
</tr>
<tr>
<td>bariatric surgery and diabetes remission</td>
<td>501b–502b</td>
</tr>
<tr>
<td>for case-control studies</td>
<td>27–28</td>
</tr>
<tr>
<td>clinical study example</td>
<td>491b</td>
</tr>
<tr>
<td>of cohort studies</td>
<td>25</td>
</tr>
<tr>
<td>of differences between groups</td>
<td>307–308</td>
</tr>
<tr>
<td>evidence-based dietetic practice reviews and</td>
<td>204</td>
</tr>
<tr>
<td>evaluating differences between samples or</td>
<td></td>
</tr>
<tr>
<td>groups, 500f, 503</td>
<td></td>
</tr>
<tr>
<td>general process of</td>
<td>490–498</td>
</tr>
<tr>
<td>hypothesis testing</td>
<td>484–486</td>
</tr>
<tr>
<td>intake distribution estimation with</td>
<td>303–304, 304f</td>
</tr>
<tr>
<td>more than two groups</td>
<td>489</td>
</tr>
<tr>
<td>nonparametric methods</td>
<td>488–489, 489f</td>
</tr>
<tr>
<td>pairing matching samples</td>
<td>483</td>
</tr>
<tr>
<td>plotting data</td>
<td>490, 491f, 492f</td>
</tr>
<tr>
<td>for prospective studies</td>
<td>25</td>
</tr>
<tr>
<td>for randomized controlled trials</td>
<td>21</td>
</tr>
<tr>
<td>relationships among samples</td>
<td>483–484</td>
</tr>
<tr>
<td>replicating measurements</td>
<td>484, 485f</td>
</tr>
<tr>
<td>in research proposals</td>
<td>62–63</td>
</tr>
<tr>
<td>research question</td>
<td>481</td>
</tr>
<tr>
<td>scale of measurement</td>
<td>481–483</td>
</tr>
<tr>
<td>serial/repeat measurements</td>
<td>483–484, 485f</td>
</tr>
<tr>
<td>small groups and</td>
<td>307</td>
</tr>
<tr>
<td>to summarize data</td>
<td>490–495</td>
</tr>
<tr>
<td>transformations</td>
<td>488, 488f</td>
</tr>
<tr>
<td>unrestrained testing</td>
<td>489–490</td>
</tr>
<tr>
<td>statistical applications</td>
<td></td>
</tr>
<tr>
<td>fundamentals</td>
<td>480–481</td>
</tr>
<tr>
<td>population values estimate</td>
<td>495–497</td>
</tr>
<tr>
<td>hybrid tool for procedures</td>
<td>498–499, 502–507</td>
</tr>
<tr>
<td>statistical power, estimating</td>
<td>238</td>
</tr>
<tr>
<td>statistical procedures</td>
<td></td>
</tr>
<tr>
<td>comparing differences between groups</td>
<td>498–499</td>
</tr>
<tr>
<td>estimating relationships or associations</td>
<td>499, 502–507</td>
</tr>
<tr>
<td>statistical results, conclusions</td>
<td>469–470, 469t</td>
</tr>
<tr>
<td>statistical significance</td>
<td></td>
</tr>
<tr>
<td>assessing</td>
<td>497–498</td>
</tr>
<tr>
<td>data dredging and</td>
<td>45</td>
</tr>
<tr>
<td>hypothesis testing</td>
<td>497–498</td>
</tr>
<tr>
<td>probability values interpretation</td>
<td>498</td>
</tr>
<tr>
<td>sample size and</td>
<td>141, 477</td>
</tr>
<tr>
<td>statistics, in data interpretation</td>
<td>46–47</td>
</tr>
<tr>
<td>stearic acid</td>
<td>388t</td>
</tr>
<tr>
<td>stearidonic acid</td>
<td>388f</td>
</tr>
<tr>
<td>stepped-wedge study design</td>
<td>134–145, 145f</td>
</tr>
<tr>
<td>STICU. See surgical/trauma intensive care unit</td>
<td>381</td>
</tr>
<tr>
<td>stratified randomization</td>
<td>142</td>
</tr>
<tr>
<td>Strengthening the Reporting of Observational Studies in Epidemiology (STROBE), 214b</td>
<td></td>
</tr>
<tr>
<td>structured interviews</td>
<td>11, 12</td>
</tr>
<tr>
<td>Student Leadership Practices Inventory</td>
<td>459</td>
</tr>
<tr>
<td>studies. See specific studies</td>
<td></td>
</tr>
</tbody>
</table>

Note: The index entries are intended to provide a comprehensive list of terms and their page references. The specific context of each term within the text is not provided here.
study designs, 360b. See also research designs
for analytic nutrition epidemiology, 112–121
for appetite research, 335
for association, 104–105
for causation studies, 107, 118–121
for clinical nutrition research, 131–135, 138
crossover, 131–132, 132f, 336b
dependent samples and, 483
for evidence-based dietetic practice
reviews, 203t–204t
for economic analysis, 372
for dietary supplement research, 437
for economic analysis, 372
for gene-diet interactions, 389, 390–394
hypothesis testing, 484–486
independent samples, 483
nonparametric methods, 488–489, 489f
observational, 113–118, 390, 392, 457, 458b, 460–461
for outcomes research, 360b
pairing matching samples, 483
partially controlled, 22
relationships among samples, 483–484
replicating measurements, 483, 484f
research question, 481
scale of measurement, 481–483
serial/repeat measurements, 483–484
stepped-wedge, 134–145, 145f
terminology for, 336b
transformations, 488, 488f
study diaries, for dietary supplement research, 437
study objectives, 129
study power, gene-diet interactions and, 392–393
study protocols, compliance to, 17, 21
SUDAAN, 179
sugars intake, biomarkers for, 320
sugar-sweetened beverage (SSB), 20
summarizing costs, 370
summary statistics
continuous data described by, 492–493
discrete data described by, 492
measure of central location, 494
measure of variation, 494
shape of distribution, 494
two continuous variables relationship, 494–495
Supplemental Nutrition Assistance Program (SNAP), 167, 597
Supplemental Nutrition Assistance Program (SNAP) Policy Database, 166f, 174
Supplement Facts panels, 277
Support Line newsletter, 525
Surgery
bariatric, 504f
diabetes remission and bariatric, 501b–502b
types of bariatric, 492, 493f
surgical/truma intensive care unit (STICU), 584
surrogate outcomes, 353–354, 353f, 355f
surveillance research, 358–359
surveillance systems, 81, 167, 168, 168b
gaps in, 174
starting research studies with, 180–181
survey design
process of, 234–237, 235f
statistical considerations, 237–238
Survey of Income and Program Participation (SIPP), 160t
Survey research, 230
applications of, 231–232
data analysis considerations in, 246–247
data collection methods, 238–242
design of, 449f
doctor of, 449f
dietary supplement research, 437
for foodservice management research, 450
planning, 234–238
questionnaire design, 239, 242–245
surveys, 13–16. See also specific surveys
categories of questions, 242, 243b
cross-sectional surveys with, 473–474
data collection, 15–16
declerical information sources on, 176b
layout of, 245–246
mailed, 241
participant selection, 14–15
pretesting and revising, 236, 245
protocol design, 242
questionnaire administration, 240
question ordering in, 245
self-administered, 241
uses of, 14
variables and measurement strategies for, 242–243
web-based, 241
Susan G Komen Foundation, 55
sustainability, in foodservice, 452f
synergistic theory and research on obesity and
Nutrition Group (STRONG) Kids Program (SKP), 224
synonyms, 283, 283b
systematic error, defining, 321b
T2D. See type 2 diabetes
tables, 542, 544f
array, 374
Atwater, 272
categories, 543, 546f
creating clear, 548b
reading, 543, 545
in research reports, 521–522, 523f
strategies to make, 545–546, 547f
TDS. See Total Diet Study
technology
for data collection, 448b
in foodservice, 452f
termination, 381
test meals, 335–337
Tests in Print, 459
text mining, 222
theoretical constructs, 60, 62
theoretical framework, 62, 63f
theoretical sampling, 91f
Theory of Reasoned Action, 407f
theory of reasoned action/planned behavior
(TRA/TPB), 407, 407f, 410
Thomson Scientific’s International Scientific Institute (ISI) Web of Knowledge, 516
time constraints, 587
timeline, 62, 64f
time-series analysis, 461f
tissue collection, practical considerations in, 323–324
tocopherols, 316f
Tolerable Upper Intake Level (UL), 297, 302
Topics in Clinical Nutrition, 516
Total Diet Study (TDS), 162f, 170, 172, 273
training
 for clinical nutrition research, 148
 incentive programs and, 21
 for protection of human subjects, 38t
transcription, 94
Transdisciplinary Obesity Prevention Program–Undergraduate, 224
transdisciplinary research
 challenges, 220–221
 conducting, 221–225
 defining, 219, 220f
 impetus for, 219
 leadership in, 221
 trans fatty acid, 388f
t trans fatty acid intake, 118
transferability, 97
transfer RNA, 382
transformations, study design and statistical analysis, 488, 488f
translational research, 574
 community-based research and, 592
 spectrum of, 593, 593f, 594b
trans theoretical model (TTM), 407, 407f, 412–415, 414f, 416b
TRA/TPB. See theory of reasoned action/planned behavior
treatment biases, 44
Trials of Hypertension Prevention study, 115
triacylglycerol, 140
triplets, 381
true effect, 470
t true experimental research design, 449t
 two-sided hypothesis tests, 485–486
 two-sided test, 472, 472f
 type 2 diabetes (T2D), 3, 140, 389
 GRS and, 393
 type I error, 394, 469–470, 486
 type II error, 470, 486
 tyrosine, 387f

U
UCSF sample size calculator, 478b
UEM. See Universal Eating Monitor
UL. See Tolerable Upper Intake Level
ultrasound, 342
unintentional bias, 111
United Nations, Food and Agriculture Organization, 80, 272
United States. See also specific agencies and departments
 fisheries of, 173
 nutrition monitoring in, 154–156
 United States Pharmacopeia (USP), 423, 431b
 dietary supplement standards by, 431
 unitizing, 94
Universal Eating Monitor (UEM), 339
Universal Product Codes, 284
University of California, Santa Cruz, 430f
University of Illinois, Chicago, 430f
University of Texas Southwestern Medical Center, 430t
unrestricted statistical testing, 489–490
unstructured interviews, 11
urinary excretion
 isoflavones, 318
 nitrogen, 319, 320
 urine biomarkers, 261, 314b
 urine collection, 324–325
US Census Bureau, 160f, 166, 176b, 178
US Department of Agriculture (USDA), 56, 176b, 231
 Branded Foods Products Database, 171, 274, 275f
Economic Research Service, 167, 425
Food and Nutrition Service, 168–169
Food Composition and Methods Development Laboratory, 147
food composition databases, 147, 258, 272
Food Safety and Inspection Service, 280
food supply estimates published by, 173
National Food and Nutrient Analysis Program, 170, 171, 278
National Nutrition Monitoring System, 251
Nutrient Content of the US Food Supply Series, 173
Nutrient Data Laboratory, 170
US Department of Education, Early Childhood Longitudinal Study, 167
US Food and Drug Administration, 515
US National Library of Medicine, 9
USP. See United States Pharmacopeia
US Preventive Services Task Force, 3
US Public Health Service, 363
US Renal Data System registry, 115
usual intake, 108
validation, of surrogate outcomes, 353, 353f
validity, 5, 77–78, 108, 245, 246f
 dietary, 259
 of DRIs, 259
 external, 119, 334, 334b, 355–357, 357b
 internal, 334, 334b, 357b
 valine, 387f
variability
 biological, 326
 food component, 286–287
 QA and, 326
variables
 binary, 499
 categoric, 482, 482f
 confounding, 22, 232b
 discrete vs continuous, 482–483, 482f
 exposure, 108–110
 interval measurement of, 243
 nominal, 242–243, 482, 482f
 ordinal, 243, 244f, 482, 482f
 primary outcome, 407
 ratio measurement of, 243–244
 scale of measurement and, 481–482, 482f
 surveys and measurement strategies for, 242–243
VAS. See visual analogue scale
VCO₂. See rate of carbon dioxide production
video, for research dissemination, 314–315
virtual crosswalk, 539
visual analogue scale (VAS), 338
visualization, 554–555
Vital and Health Statistics series, 373
vital statistics measurements, 81–82
vitamin A, 299f, 385f, 438f
vitamin B-5, 385f
vitamin B-6, 312, 385f, 438f
vitamin B-12, 385f, 438f
 blood concentration, 316f
vitamin C, 3, 18, 313, 317, 438
quantification of, 314
vitamin D, 276, 297, 298, 385, 438
blood concentration, 316
vitamin E, 299, 385, 438
vitamin K, 276
vitamins, 385
VO\textsubscript{2}, See rate of oxygen consumption
volunteers’ bias, 110

W
web-based surveys, 241
webQDA, 95
web seminars (webinars)
delivery, 538
editing after, 538
planning, 537–538, 538
troubleshooting, 538–539
websites, to determine sample size, 477, 478
weight and height prestudy, 504
weight control behaviors, 61
weighted analysis, 179
weight loss medication, 477
weight management programs, outcomes chain from, 354, 356
WesVar, 179
What We Eat in America (WWEIA), 160, 169, 172, 231, 308
WHI. See Women’s Health Initiative
whole-body chamber, 319
whole-room calorimetry, 319
Willett Food Frequency Questionnaire, 256
Women’s Health Initiative (WHI), 3, 16, 320, 321
World Health Organization, 208, 271
Child Growth Standards, 168
economic analysis and, 376
Global Infobase, 80
Handbook for Guideline Development, 214
World Medical Association, 5, 36
writers
checklists for, 522
conducted research, 559
editor communication with, 561
ethics and, 48–49
irresponsible authorship, 561–563
journal choice of, 560, 561
manuscript preparation, 559–560
manuscript submission, 561, 561
perspective on research, 558–563
WWEIA. See What We Eat in America

Y
Youth Risk Behavior Survey (YRBS), 162, 173
YouTube, 539
YRBS. See Youth Risk Behavior Survey

Z
zinc, 303, 386, 438