Contents

List of Boxes, Tables, and Figures .. v
Frequently Used Terms and Abbreviations ix
Reviewers ... xiii
Preface .. xv
Acknowledgments ... xvii
About the Authors ... xix
Special Note .. xi
Introduction .. xiii

SECTION 1
Introduction to Thyroid Disorders

Chapter 1 Overview of the Thyroid and Its Function 2
Chapter 2 Thyroid and Weight Regulation 15
Chapter 3 Energy and Nutrient Requirements in Thyroid Disease .. 29
Chapter 4 Iodine and Its Role in Thyroid Management 36

SECTION 2
Hypothyroidism

Chapter 5 Signs and Symptoms, Risk Factors, and Etiology of Hypothyroidism ... 42
Chapter 6 Medical Management of Hypothyroidism 48
Chapter 7 Medical Nutrition Therapy and Nutrition Recommendations for Hypothyroidism ... 61
Chapter 8 Alternative Treatments for Hypothyroidism 87

SECTION 3
Hyperthyroidism

Chapter 9 Signs and Symptoms, Risk Factors, and Etiology of Hyperthyroidism ... 92
Chapter 10 Medical Management of Hyperthyroidism 99
Chapter 11 Medical Nutrition Therapy and Nutrition Recommendations for Hyperthyroidism ... 110
Chapter 12 Alternative Treatments for Hyperthyroidism 131

SECTION 4
Thyroid Cancer

Chapter 13 Signs and Symptoms, Risk Factors, and Etiology of Thyroid Cancer ... 136
Chapter 14 Medical Management of Thyroid Cancer 139
Chapter 15 Medical Nutrition Therapy and Nutrition Recommendations for Thyroid Cancer ... 144
Chapter 16 Alternative Treatments for Thyroid Cancer 166
List of Boxes, Tables, and Figures

<table>
<thead>
<tr>
<th>BOXES</th>
<th>Box 1.1 Potential Challenges to Treatment Based on Thyroid-Stimulating Hormone Levels</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Box 1.2 Additional Information Regarding Thyroid Hormone Levels</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Box 1.3 Lab Definitions and Interpretation</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Box 1.4 The Nutrition Care Process</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Box 2.1 Research on Thyroid Medications and Weight Management</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Box 2.2 Optimization of Diet for Weight Management with Thyroid Imbalance</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Box 2.3 Optimization of Physical Activity for Weight Management in Thyroid Imbalance</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Box 2.4 Physical Activity Strategies for Weight Loss and Prevention of Weight Regain for Adults</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Box 4.1 Dietary Allowances and Tolerable Upper Intake Level for Iodine</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Box 4.2 How Iodine Levels May Present in Thyroid Patients</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Box 5.1 Signs and Symptoms of Hypothyroidism</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Box 6.1 Conditions that Warrant Thyroid-Stimulating Hormone Screening</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Box 6.2 Complications of Untreated or Undertreated Hypothyroidism</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Box 7.1 Food- or Nutrition-Related History and Hypothyroidism, Hashimoto Disease, and Endemic Goiter</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Box 7.2 Sample Laboratory Data for Hypothyroid Patients</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Box 7.3 Hypothyroid Nutrition-Related Intake Diagnoses and PES Statements</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Box 7.4 Hypothyroid Nutrition-Related Clinical Diagnoses and PES Statements</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Box 7.5 Hypothyroid Nutrition-Related Behavioral–Environmental Diagnoses and PES Statements</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Box 7.6 Nutrition Intervention Goals for Hypothyroidism</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Box 7.7 Medical Nutrition Therapy for Intestinal Permeability in Hashimoto Disease</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Box 7.8 Sample Nutrition Prescriptions in Hypothyroidism, Hashimoto Disease, and Endemic Goiter</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Box 7.9 Nutrition Monitoring and Evaluation of Adult Hypothyroid Patients</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Box 8.1 Supplements Common to Hypothyroidism</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Box 9.1 Signs and Symptoms of Hyperthyroidism</td>
<td>93</td>
</tr>
<tr>
<td>Box 10.1</td>
<td>Complications of Untreated Hyperthyroidism</td>
<td>101</td>
</tr>
<tr>
<td>Box 10.2</td>
<td>Medications for Hyperthyroidism</td>
<td>104</td>
</tr>
<tr>
<td>Box 10.3</td>
<td>Monitoring of Medical Treatment</td>
<td>107</td>
</tr>
<tr>
<td>Box 11.1</td>
<td>Food- or Nutrition-Related History for Hyperthyroidism and Graves Disease</td>
<td>111</td>
</tr>
<tr>
<td>Box 11.2</td>
<td>Sample Laboratory Data for Hyperthyroid Patients</td>
<td>114</td>
</tr>
<tr>
<td>Box 11.3</td>
<td>Hyperthyroid Nutrition-Related Intake Diagnoses and PES Statements</td>
<td>117</td>
</tr>
<tr>
<td>Box 11.4</td>
<td>Hyperthyroid Nutrition-Related Clinical Diagnoses and PES Statements</td>
<td>119</td>
</tr>
<tr>
<td>Box 11.5</td>
<td>Hyperthyroid Nutrition-Related Behavioral–Environmental Diagnoses and PES Statements</td>
<td>120</td>
</tr>
<tr>
<td>Box 11.6</td>
<td>Nutrition Intervention Steps for Hyperthyroidism</td>
<td>121</td>
</tr>
<tr>
<td>Box 11.7</td>
<td>Sample Nutrition Prescriptions in Hyperthyroidism and Graves Disease</td>
<td>126</td>
</tr>
<tr>
<td>Box 11.8</td>
<td>Nutrition Monitoring and Evaluation of Adult Hyperthyroid Patients</td>
<td>128</td>
</tr>
<tr>
<td>Box 14.1</td>
<td>Risk Stratification of Death from Thyroid Cancer</td>
<td>140</td>
</tr>
<tr>
<td>Box 15.1</td>
<td>Food- or Nutrition-Related History for Nodules and Thyroid Cancer</td>
<td>145</td>
</tr>
<tr>
<td>Box 15.2</td>
<td>Sample Laboratory Snapshot with Clinical History/Assessment Criteria for Thyroid Cancer</td>
<td>149</td>
</tr>
<tr>
<td>Box 15.3</td>
<td>Thyroid Cancer Nutrition-Related Intake Diagnoses and PES Statements</td>
<td>151</td>
</tr>
<tr>
<td>Box 15.4</td>
<td>Thyroid Cancer Nutrition-Related Clinical Diagnosis and PES Statements</td>
<td>153</td>
</tr>
<tr>
<td>Box 15.5</td>
<td>Thyroid Cancer Nutrition-Related Behavioral–Environmental Diagnoses and PES Statements</td>
<td>154</td>
</tr>
<tr>
<td>Box 15.6</td>
<td>Foods to Avoid on a Low-Iodine Diet</td>
<td>157</td>
</tr>
<tr>
<td>Box 15.7</td>
<td>Potential Complications of Radioactive Iodine and Nutritional Strategies</td>
<td>158</td>
</tr>
<tr>
<td>Box 15.8</td>
<td>Sample Nutrition Prescriptions for Thyroid Nodules and Thyroid Cancer</td>
<td>160</td>
</tr>
<tr>
<td>Box 15.9</td>
<td>Nutrition Monitoring and Evaluation of Adult Patients with Thyroid Nodules and Thyroid Cancer</td>
<td>163</td>
</tr>
<tr>
<td>Box 17.1</td>
<td>Concerns for Treatment Options Used for Graves Disease in Pediatric Patients</td>
<td>182</td>
</tr>
<tr>
<td>Box 17.2</td>
<td>Thyroid Cancer Types and Follow-Up Recommendations in Pediatric Patients</td>
<td>185</td>
</tr>
<tr>
<td>Box 19.1</td>
<td>Food and Lifestyle Practices to Promote Thyroid Health and Prevent Disease</td>
<td>207</td>
</tr>
</tbody>
</table>
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Level of Thyroid-Stimulating Hormone with Interpretation and Expected Hormonal Profile</td>
<td>5</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Typical vs Other Lab Ranges</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Hormones, Weight Regulation, and Relationship to the Thyroid</td>
<td>16</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Activity and Stress/Injury Factors</td>
<td>30</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Quick Estimations for Energy Needs</td>
<td>30</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Daily Protein Requirements</td>
<td>31</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Dietary Reference Intake Method of Estimating Fluid Requirements for Healthy Adults</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Selected Recommended Dietary Allowances/Adequate Intake and Tolerable Upper Intake Levels of Nutrients, and How They May Present in Thyroid Patients</td>
<td>33</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Recommended Intake of Iodine in Different Populations</td>
<td>39</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Medication Options for Treating Hypothyroidism</td>
<td>50</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Thyroid Conditions and Medication Dosing</td>
<td>55</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Conversion of Thyroid Medications</td>
<td>56</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Lab Ranges to Test for Hypothyroidism and Hashimoto Disease</td>
<td>64</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Hemoglobin Values and Interpretation for Anemia</td>
<td>65</td>
</tr>
<tr>
<td>Table 11.1</td>
<td>Optimal Lab Ranges to Test for Hyperthyroidism and Graves Disease</td>
<td>113</td>
</tr>
<tr>
<td>Table 17.1</td>
<td>American Thyroid Association Trimester-Specific Thyroid-Stimulating Hormone Guidelines</td>
<td>172</td>
</tr>
<tr>
<td>Table 17.2</td>
<td>Recommended Intake of Iodine in Different Populations</td>
<td>178</td>
</tr>
<tr>
<td>Table 17.3</td>
<td>Urinary Iodine Levels</td>
<td>178</td>
</tr>
<tr>
<td>Table 17.4</td>
<td>Levothyroxine Needs Based on Age</td>
<td>179</td>
</tr>
<tr>
<td>Table 17.5</td>
<td>Dosing of Methimazole in Pediatric Patients</td>
<td>182</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Thyroid Anatomy</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Hormonal Interplay Among the Hypothalamus, Pituitary Gland, and Thyroid</td>
<td>3</td>
</tr>
</tbody>
</table>
Frequently Used Terms and Abbreviations

AACE American Association of Clinical Endocrinologists
AAFP American Academy of Family Physicians
ACE angiotensin converting enzyme
ACTH adrenocorticotropic hormone
ADH antidiuretic hormone
AI Adequate Intake
AICR American Institute for Cancer Research
AITD autoimmune thyroiditis
AJCC American Joint Committee on Cancer
AN anorexia nervosa
ASPN American Society for Parenteral and Enteral Nutrition
ATA American Thyroid Association
ATD antithyroid drugs
BEE basal energy expenditure
BIA bioelectrical impedance analysis
BMI body mass index
BN bulimia nervosa
BPA bisphenol-A
CEA carcinoembryonic antigen
CH congenital hypothyroidism
CI EBNPG Critical Illness Evidence-Based Nutrition Practice Guidelines
CLA conjugated linoleic acid
CLT chronic lymphocytic thyroiditis
CPK creatine phosphokinase
CRP C-reactive protein test
D3 type 3 iodothyronine deiodinase
DEXA dual energy x-ray absorptiometry
DKA diabetic ketoacidosis
DRI Dietary Reference Intakes
DTC differentiated thyroid cancer
DTE desiccated thyroid extract
DV Daily Value
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDNOS</td>
<td>eating disorder not otherwise specified</td>
</tr>
<tr>
<td>EGCG</td>
<td>epigallocatechin gallate</td>
</tr>
<tr>
<td>FDA</td>
<td>US Food and Drug Administration</td>
</tr>
<tr>
<td>FNA</td>
<td>fine needle aspiration (biopsy)</td>
</tr>
<tr>
<td>FODMAPs</td>
<td>fermentable oligosaccharides, disaccharides, and monosaccharides and polyols</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle-stimulating hormone</td>
</tr>
<tr>
<td>FT3</td>
<td>free triiodothyronine (T3)</td>
</tr>
<tr>
<td>FT4</td>
<td>free thyroxine (T4)</td>
</tr>
<tr>
<td>GD</td>
<td>Graves disease</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>GH</td>
<td>growth hormone</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>GO</td>
<td>Graves ophthalmopathy</td>
</tr>
<tr>
<td>H/H</td>
<td>hemoglobin/hematocrit</td>
</tr>
<tr>
<td>HBE</td>
<td>Harris-Benedict equation</td>
</tr>
<tr>
<td>hCG</td>
<td>human chorionic gonadotropin</td>
</tr>
<tr>
<td>HCTZ</td>
<td>hydrochlorothiazide</td>
</tr>
<tr>
<td>HIIT</td>
<td>high-intensity interval training</td>
</tr>
<tr>
<td>HPA</td>
<td>hypothalamic-pituitary-adrenal</td>
</tr>
<tr>
<td>HPT</td>
<td>hypothalamic-pituitary-thyroid</td>
</tr>
<tr>
<td>HRT</td>
<td>hormone replacement therapy</td>
</tr>
<tr>
<td>HSL</td>
<td>hormone-sensitive lipase</td>
</tr>
<tr>
<td>IBS</td>
<td>irritable bowel syndrome</td>
</tr>
<tr>
<td>IgE</td>
<td>immunoglobulin E</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>IIH</td>
<td>iodine-induced hyperthyroidism</td>
</tr>
<tr>
<td>LBM</td>
<td>lean body mass</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>liquid chromatography–tandem mass spectrometry</td>
</tr>
<tr>
<td>LDN</td>
<td>low-dose naltrexone</td>
</tr>
<tr>
<td>LH</td>
<td>luteinizing hormone</td>
</tr>
<tr>
<td>LLLT</td>
<td>low-level laser therapy</td>
</tr>
<tr>
<td>LPL</td>
<td>lipoprotein lipase</td>
</tr>
<tr>
<td>L-T3</td>
<td>liothyronine</td>
</tr>
<tr>
<td>L-T4</td>
<td>levothyroxine</td>
</tr>
<tr>
<td>MCTs</td>
<td>medium-chain triglycerides</td>
</tr>
<tr>
<td>MCV</td>
<td>mean corpuscular volume</td>
</tr>
<tr>
<td>MI</td>
<td>myo-inositol</td>
</tr>
<tr>
<td>MMA</td>
<td>methylmalonic acid</td>
</tr>
<tr>
<td>MMI</td>
<td>methimazole</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MMP</td>
<td>matrix metalloproteinase</td>
</tr>
<tr>
<td>MNT</td>
<td>medical nutrition therapy</td>
</tr>
<tr>
<td>MTC</td>
<td>medullary thyroid cancer/carcinoma</td>
</tr>
<tr>
<td>MTHFR</td>
<td>methylenetetrahydrofolate reductase</td>
</tr>
<tr>
<td>NAC</td>
<td>N-acetylcysteine</td>
</tr>
<tr>
<td>NCP</td>
<td>Nutrition Care Process</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>OH</td>
<td>overt hypothyroidism</td>
</tr>
<tr>
<td>PCOS</td>
<td>polycystic ovary syndrome</td>
</tr>
<tr>
<td>PES</td>
<td>problem, etiology, signs and symptoms statements</td>
</tr>
<tr>
<td>PFASs</td>
<td>perfluoroalkyl and polyfluoroalkyl substances</td>
</tr>
<tr>
<td>PTH</td>
<td>parathyroid hormone</td>
</tr>
<tr>
<td>PTU</td>
<td>propylthiouracil</td>
</tr>
<tr>
<td>RAI</td>
<td>radioactive iodine</td>
</tr>
<tr>
<td>RCT</td>
<td>randomized controlled trial</td>
</tr>
<tr>
<td>RDA</td>
<td>Recommended Dietary Allowance</td>
</tr>
<tr>
<td>RDW</td>
<td>red blood cell distribution width</td>
</tr>
<tr>
<td>rhTSH</td>
<td>recombinant human TSH</td>
</tr>
<tr>
<td>RMR</td>
<td>resting metabolic rate</td>
</tr>
<tr>
<td>RT3</td>
<td>reverse triiodothyronine (T3)</td>
</tr>
<tr>
<td>RxWBS</td>
<td>post-treatment whole body scan</td>
</tr>
<tr>
<td>SCH</td>
<td>subclinical hypothyroidism</td>
</tr>
<tr>
<td>SH</td>
<td>subclinical hyperthyroidism</td>
</tr>
<tr>
<td>SHBG</td>
<td>sex hormone binding globulin</td>
</tr>
<tr>
<td>SIBO</td>
<td>small intestinal bacterial overgrowth</td>
</tr>
<tr>
<td>SSKI</td>
<td>potassium iodide</td>
</tr>
<tr>
<td>T1</td>
<td>monoiodothyronine</td>
</tr>
<tr>
<td>T2</td>
<td>diiodothyronine</td>
</tr>
<tr>
<td>T3</td>
<td>triiodothyronine</td>
</tr>
<tr>
<td>T4</td>
<td>thyroxine</td>
</tr>
<tr>
<td>TA</td>
<td>toxic adenoma</td>
</tr>
<tr>
<td>TAb</td>
<td>thyroid antibody</td>
</tr>
<tr>
<td>TBG</td>
<td>thyroxine-binding globulin</td>
</tr>
<tr>
<td>TBII</td>
<td>thyrotropin-binding inhibitory immunoglobulin</td>
</tr>
<tr>
<td>TEE</td>
<td>total energy expenditure</td>
</tr>
<tr>
<td>TFT</td>
<td>thyroid function test</td>
</tr>
<tr>
<td>Tg</td>
<td>thyroglobulin</td>
</tr>
<tr>
<td>TgAb</td>
<td>thyroglobulin antibody</td>
</tr>
<tr>
<td>TIBC</td>
<td>total iron binding capacity</td>
</tr>
<tr>
<td>TMNG</td>
<td>toxic multinodular goiter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>TPO</td>
<td>thyroid peroxidase/thyroperoxidase</td>
</tr>
<tr>
<td>TPOAb</td>
<td>thyroid peroxidase antibody</td>
</tr>
<tr>
<td>TRAb</td>
<td>thyroid stimulating hormone receptor antibody</td>
</tr>
<tr>
<td>TRH</td>
<td>thyrotropin-releasing hormone</td>
</tr>
<tr>
<td>TSH</td>
<td>thyroid-stimulating hormone</td>
</tr>
<tr>
<td>TSI</td>
<td>thyroid stimulating immunoglobulin</td>
</tr>
<tr>
<td>TT</td>
<td>total thyroidectomy</td>
</tr>
<tr>
<td>TT3</td>
<td>total triiodothyronine (T3)</td>
</tr>
<tr>
<td>TT4</td>
<td>total thyroxine (T4)</td>
</tr>
<tr>
<td>TTR</td>
<td>transthyretin</td>
</tr>
<tr>
<td>UBW</td>
<td>usual body weight</td>
</tr>
<tr>
<td>UICC</td>
<td>Union for International Cancer Control</td>
</tr>
<tr>
<td>UL</td>
<td>Tolerable Upper Intake Level</td>
</tr>
<tr>
<td>US</td>
<td>ultrasound</td>
</tr>
<tr>
<td>WBS</td>
<td>whole body scan</td>
</tr>
</tbody>
</table>
Reviewers

Sheila Dean, DSc, RDN, LDN, IFMCP
Co-founder, Integrative and Functional Nutrition Academy
Palm Harbor, FL

Lori Enriquez, MPH, RDN, LDN, CHES, FAND
Nutrition and Health Consultant, Eat Fit Health, LLC
King of Prussia, PA

Nicole German Morgan, RDN, LD, CLT
Registered Dietitian Nutritionist, Nicole’s Nutrition, LLC dba Thyroid Dietitian
Bradenton, FL

Cheryl Harris, MPH, RD
Owner, Harris Whole Health
Fairfax, VA

Nancy Jolliffe, RD, CSO, LD
Clinical Dietitian II, Hall-Perrine Cancer Center
Cedar Rapids, IA

Lisa Markley, MS, RDN
Registered Dietitian Nutritionist, Nourish Yourself Nutrition & Wellness
Lenexa, KS

Clara Schneider, MS, RD, RN, LDN, CDE
Diabetes Educator
Corolla, NC, and Alameda, CA
Preface

This book is intended mainly for the health care professional and, in that vein, is written using scientific and medical language. I would ask health professionals using this book to approach the nutrition care of thyroid patients with an open mind. Thyroid care is nuanced—no two patients are the same, and each person will present with a different set of clinical parameters and reported symptoms. This book, which contains a wealth of available evidence-based practices and potential interventions at the time of writing, provides guidance for health care practitioners such as physicians, dietitians, and all other allied care professionals working with patients with thyroid disease. My hope is that once a patient has tried “everything” yet still doesn’t feel “right,” this book will help us as providers to determine additional options to better help them. This book is intended as both a time-saver and a guide, matching nutrition care with medical care, but with the understanding that research will continue to refine and improve recommendations over time.

Throughout the writing and revision phases, I have tried to provide a balanced account of the available research, citing evidence-based guidelines from the American Thyroid Association (ATA) and the American Association of Clinical Endocrinologists (AACE), as well as citing numerous other research studies. I have based the framework of nutrition care on the Academy of Nutrition and Dietetics Nutrition Care Process (NCP). You will also find information from several evidence-based integrative and functional medicine resources included within. Peer reviewers weighed in to help ensure that content was relevant, up-to-date, and useful for practitioners.

Although evidence will continue to evolve from ongoing research, we must remember that our patients are people, not study subjects. There may not yet be robust research to demonstrate every potential benefit that practitioners might see for each intervention. My hope is that this book helps provide a fluid set of recommendations that are subject to change based on the available research. There is controversy in the subject of thyroid care; therefore, there are times where a provider may need to use clinical judgment to supersede the overarching recommendations and use innovative interventions, though keeping a patient’s safety in mind is of primary importance in any of these decisions.

The main premise I wish to urge is that we focus on patient-centered care—listening closely to our patients, taking time and giving the attention needed to find the best course of action for each patient, one thyroid at a time.

Nicole Anziani, MS, RD, CDN, CDCES
Brooklyn, New York
Acknowledgments

I dedicate this work to my parents.

I wish to thank:

Debbie—my mother and the only person in my family to buy a book about thyroid when I was struggling, who called me to say, “I’m on page 108. I know all about you now. Oy … the hormones!” In 2015, while I was writing this book, my mother had a stroke. Much of this manuscript was written in her hospital room over a period of months. She constantly encouraged me to write, even when I was her caretaker. Thank you, Bella, for calling me your author.

Raul, my father and first editor—you’ve always encouraged me and believed in my abilities more than I did. You’ve shared in every triumph and struggle in my life. You were the first person I saw when I opened my eyes after surgery and the only one who offered to make me soup. I have endless appreciation for you and hope this makes you proud.

Grandma Mickey—along with my parents, you jumped around your kitchen doorway when the proposal for this book was approved. Thank you for being.

My paternal grandma, Elba Anziani, Mamita—you watched from the spirit realm as I wrote each word.

My brother Reuben “Madhu”—for providing me with healing (and a BioMat to write on) when my stress level was high.

My cousins J. Javier Anziani, JD, and Andre Anziani, JD, LLM, who provided contract expertise and advice.

Vanessa Alvarez, MS, RD—one of the best dietitians (and people) I know, whose empathy is unparalleled. You are part of the reason I am a dietitian today. Love you, my sister.

Jamillah Hoy Rosas, MPH, RD, CDCES—you were my first registered dietitian nutritionist boss and advisor in academic research at New York University. You always had faith in me, offering so many professional opportunities throughout my career. I will always look up to you as a mentor in the field.

Heather Perillo, MS, RD, CDN—you were a prime example of what a dietitian should aspire to be, first as my preceptor and later my colleague. Your training shaped my work and I thank you for having been my reference all these years.

All other instrumental mentors or dietitians in my academic life—including, but not limited to: Robert Fabini; Joan Cone; Christopher Dolder; Joan Thompson, PhD, MPH, RD, CDCES; Mary Mead, MEd, RD, CDCES; Nancy Hudson, PhD (Hon), MS, RD; Domingo Piñero, PhD; Antionette Franklin, MS, RD, CDN; Lisa Garback Garner, MS, RD, CDN; Mary Ellen Kelly, MS, RDN, CSSD, LDN; Pamela Purcell, MS, RD, CNSC, LDN; Eileen Ostrander, MS, RD, CDN; Cynthia Floyd, MS, RD, CDN, CDCES; Valerie L. Thomas, MS, RD, CDN; and Cindy Sizemore, MS, RD, LD.

The reviewers of this publication—thank you so much for your meticulous work and valuable comments that have made this publication a quality one.
Francesco Celi, MD, MHSc—your time and expertise as medical reviewer of this work is tremendously appreciated. Thank you for your contribution to thyroid research and for making this project stronger in so many ways.

The Academy of Nutrition and Dietetics—for taking on this project, and for your willingness to bring controversial information to light for the benefit of health professionals and patients alike.

Arlene Bregman, DrPh—for your organization of the local ThyCa meetings in NYC.

Yan Qi, PhD, and Liza Wong—for your suggestions and sharing conference notes.

Jaime Schehr, ND, RD—for pointing me to Dietitians in Integrative and Functional Medicine and the Natural Medicines Database for evidence-based research on dietary supplements.

Jennifer Trevillian and April Conlon, PharmD—for sharing resources and your personal journeys with me.

Anne Eller, PhD—for helping me understand the review process and sitting with me as I read the first set of reviews. Thanks for your expert insight!

Mally—you were one of the first to congratulate me on this project and sent motivational raps for the writing process. Thank you!

The B-School focus group who helped inspire the proposal for this book—Christine Gutierrez, LMHC; Tatiana Dellepiane; Dominick Quartuccio; Bertina Lee; Jennifer Spivak; Michelle Shemilt; and the memory of Jamie Lauren Zimmerman.

My friends and former coworkers at 185th Street, who made me feel like a rock star when they found out about this book—namely, Kimone Gilphilin, MS, RN; Lisa Calandra, DPM; Marlene Velez; and Danny Vairo.

All my colleagues at Cecelia Health—for your daily support.

The doctors who have helped me in my personal thyroid experience—Marc A. Cohen, MD, MPH; Arthur Spokojny, MD (RIP), and his medical staff (Sherine Smith); Naina Marballi, BASM; Alla Khalfin, DO; Maurice Beer, MD; Robin Berzin, MD; Lilli Link, MD; and Rekha Kumar, MD, MS. Each of you, in your own way, saved my life. How can I possibly thank you?

The most inspirational thought leaders I’ve encountered on my personal journey with thyroid cancer—Kris Carr; Terri Cole, LCSW; Sara Gottfried, MD; and Alan Christianson, ND—your work and vision have all contributed to my work. You’ve given me a reason to get up in the morning, permission to live without fear, and a fire to learn and hope for a better future.

Jancarlo—at the start of this project, your work ethic inspired mine; as the project continued, your laughter medicine became just as vital as my thyroid medicine. Thank you for your partnership and love.

All the souls I’ve had the privilege to work with, share time with, and learn from, and my community of friends and family—thank you for encouraging my medical and writing journeys. Your support has kept me truly alive.
About the Authors

Nicole Anziani, MS, RD, CDN, CDCES, received her bachelor’s degree in nutrition and dietetics from the University of California at Berkeley and completed her dietetic internship at the James J. Peters VA Medical Center in the Bronx, NY, coordinated with a master of science in clinical dietetics from New York University. She is a registered dietitian licensed in New York, a certified diabetes care and education specialist, and certified as a personal trainer, group fitness instructor, Ayurvedic wellness counselor, and reiki practitioner. As a thyroid cancer survivor, Anziani’s passion and mission is to make nutrition care information for thyroid conditions easily accessible to practitioners and patients. Born and raised in Richmond, CA, Anziani now lives and works remotely via Brooklyn, NY.

Introduction and Medical Review

Francesco S. Celi, MD, MHSc, is the William G. Blackard Professor of Medicine and Chair of the Division of Endocrinology Diabetes and Metabolism at Virginia Commonwealth University in Richmond. Prior to joining the faculty of Virginia Commonwealth University, Celi worked for 10 years as clinical investigator at the National Institute of Diabetes, Digestive, and Kidney Diseases in Bethesda, MD. Celi is a graduate of the University of Rome “La Sapienza,” and a diplomate of the Board of Internal Medicine, with subspecialty in endocrinology, diabetes, and metabolism. He was awarded the master's in health sciences by Duke University in Durham, NC. Celi conducts both clinical and translational research and his scientific interest is focused on the physiology and pathophysiology of thyroid hormone action as it relates to energy metabolism. Another area of research is in the mechanisms of adipose tissue differentiation and on the role of hormonal signaling (including thyroid hormone) on promoting differentiation of adipose tissue depots in thermogenic fat and its ability to dissipate energy. Celi has published more than 80 peer-reviewed manuscripts and has been invited to lecture at various institutions across the United States and Europe. Celi’s clinical interests are thyroid disease, management of thyroid cancer, and treatment of diabetes.
Special Note

The Academy of Nutrition and Dietetics has adopted the increasingly common practice of dropping possessive apostrophes from the names of diseases and disorders. In alignment with the Endocrine Society, the American Medical Association, the 32nd edition of Dorland’s Illustrated Medical Dictionary, and new material from National Institutes of Health, the Health Professional’s Guide to Nutrition Management of Thyroid Disease spells terms such as Graves disease without an apostrophe. Other organizations and older publications may still maintain an apostrophe, but there is no difference in meaning between Graves disease and Graves’ disease or Hashimoto thyroiditis and Hashimoto’s thyroiditis.
The action of thyroid hormone affects virtually all tissues of an organism, and it plays a critical role in the modulation of energy metabolism. Indeed, the dramatic effects of overt thyroid disease—particularly hyperthyroidism—on body weight and composition are valuable examples of the critical role hormones play in the regulation of metabolism. Aside from energy metabolism, thyroid hormone action affects other critical systems in an organism: first and foremost, the central nervous system, both during development and throughout adult life. Thyroid hormone action is also particularly important for bone growth and remodeling, as well for skeletal muscle development and function. Collectively, the action of thyroid hormone is pervasive, and its regulation is crucial for maintenance of body functions.

Disorders affecting the thyroid gland—both function and tumors—are very common in the general population and are disproportionately frequent in women. Although the symptomatology associated with overt thyroid dysfunction is quite characteristic and easily recognizable, most patients with thyroid disorders are affected by mild forms of thyroid dysfunction, with symptoms and signs that are often vague and aspecific. As individuals age, the prevalence of thyroid dysfunction can be as high as 12%, and population studies indicate that thyroid nodules are also very common. Increasing availability of sophisticated diagnostic tools and more widespread use of thyroid ultrasound has contributed to the increased frequency of diagnoses of thyroid dysfunction, nodules, and cancer in recent years.

This increase in diagnoses of thyroid pathology has been mirrored by an increase in awareness among the general public of the role (whether real or perceived) that thyroid function plays regarding an individual’s sense of well-being. This has progressed to the point that assessment of thyroid function is one of the first steps providers undertake while evaluating symptomatology that is not clear and that may have overlap with other chronic conditions. As a consequence, thyroid disease and dysfunction are very common concerns among patients and providers, and, quite often, both parties share the notion that subclinical or unrecognized thyroid dysfunction may be the root cause of otherwise unexplained symptoms. As a consequence, modulation of thyroid function, via either therapy or dietary supplements, is often employed to address a variety of conditions, particularly those involving weight gain, low energy, chronic fatigue, and depression.

Against this background of increased awareness and, in some cases, perhaps excessive expectations, it’s important to consider that the thyroid gland and its function is heavily affected by nutrition and adequate delivery of oligo-elements: in particular, iodine and selenium. In fact, iodine deficiency represents the most common preventable cause of intellectual disabilities worldwide. Although the United States is considered an iodine-sufficient area, some conditions and dietary habits can significantly impact iodine intake, resulting in iodine deficiency. Thyroid pathology itself, in either the acute or recovery phase of disease,
often requires nutritional intervention to optimize the healing process and to
prevent additional morbidity.

Some lay literature and a substantial number of practitioners—particularly
in the fields of alternative and complementary medicine—strongly support using
nutritional supplements and modification of diet to optimize thyroid function,
either by addressing nutritional deficiencies or stimulating immune function.
Although the empirical evidence of this in humans is marginal and of limited
quality, it is important to note that in vitro experiments and mechanistic studies
carried out in laboratory animal or cell culture systems have indicated that nutri-
tion and oligo-element supplementation play roles in the pathophysiology of the
thyroid. While this is important, it’s also important to recognize the knowledge
gap between findings in experimental models and clinical relevance in patients.

The Health Professional’s Guide to Nutrition Management of Thyroid Disease
takes a unique course by defining the role of nutrition and dietary supplemen-
tation in thyroid physiology and pathology. By systematically defining the vari-
ous physiologic states and pathologic conditions affecting the thyroid, this book
provides relevant information on the potential roles of nutrition intervention and
use of dietary supplements. It strives to define the mechanistic rationale for such
interventions; whenever possible, it provides references to relevant human stud-
ies. It provides references to guidelines of leading professional organizations that
are dedicated to the study and care of thyroid disease, and it recognizes the gaps
in knowledge of the effects of nutritional interventions and dietary supplemen-
tation that exist in relation to thyroid disorders.

This book’s systematic approach to the topic and its extensive references to
high-quality published research make it a useful reference for nutritionists and
practitioners alike. At the same time, each chapter’s introduction provides a good
framework of the problem presented, which enables a nonmedical audience to
better understand the roles nutrition and dietary supplementation can serve in
the amelioration of thyroid disease, all while maintaining realistic expectations.
Finally, the extensive references and resources herein provide a comprehensive
tool set to help readers further deepen their knowledge of the interactions among
nutrition, dietary supplementation, and thyroid function.
SECTION 1

Introduction to Thyroid Disorders

CHAPTER 1 Overview of the Thyroid and Its Function 2

CHAPTER 2 Thyroid and Weight Regulation 15

CHAPTER 3 Energy and Nutrient Requirements in Thyroid Disease 29

CHAPTER 4 Iodine and Its Role in Thyroid Management 36
INTRODUCTION

The thyroid is a butterfly-shaped endocrine gland weighing less than 1 ounce (28 g) in healthy adults and children. It is located in the middle of the lower neck, in front of the trachea (see Figure 1.1). Thyroid hormones regulate the body’s metabolism and affect nearly every action of every cell, including such vital functions as heart rate and energy level.

The thyroid works in conjunction with the pituitary gland and the hypothalamus. The hypothalamus, located in the lower central area of the brain, produces thyrotropin-releasing hormone (TRH) in response to external factors and stressors. TRH travels to the pituitary gland at the base of the brain. There, thyrotropin/thyroid-stimulating hormone (TSH) is produced. TSH is sent to the thyroid gland to regulate thyroid hormone storage, production, and release. Figure 1.2 illustrates the feedback mechanisms of the hypothalamic-pituitary-thyroid (HPT) axis.

FIGURE 1.1
THYROID ANATOMY
Hypothyroidism, or underactive thyroid, is the most common thyroid disorder. It is thought to affect approximately 4.6% of the US population over age 12, and that estimate increases to as high as 10% outside of the United States. In hypothyroidism, the thyroid gland does not produce enough thyroid hormones, including triiodothyronine (T3) and thyroxine (T4), to maintain the body’s functions. This decreases metabolism, including cell activity and regeneration, and may be related to unintentional weight gain. Refer to Chapter 2 for more information regarding thyroid disease and weight regulation.

Hypothyroidism can increase cardiovascular risks and can cause mood changes, fatigue, and gastrointestinal distress, all of which can be barriers to healthy lifestyle changes. The health or nutrition professional is challenged with the task of helping patients set realistic goals for diet and exercise while taking into account possible micronutrient deficiencies and interactions between thyroid medications, foods, and supplements. It is important to coordinate with the patient’s medical team in order to promote improved outcomes.

There are many potential physical and mental symptoms of hypothyroidism. Not all symptoms are present in every patient, and some patients may not exhibit any symptoms; some can also be subtle, especially in subclinical hypothyroidism (SCH). It is important to note that many hypothyroid symptoms overlap with those seen in other chronic conditions. Box 5.1 summarizes some common signs and symptoms of hypothyroidism.

BOX 5.1 SIGNS AND SYMPTOMS OF HYPOTHYROIDISM

Physical Symptoms of Hypothyroidism

- Brittle nails
- Chronic sinusitis
- Constipation
- Decreased libido
- Decreased perspiration
- Difficulty losing weight
- Dry and coarse skin
- Dry and gritty eyes
- Enlarged neck
- Fatigue
- Goiter
- Hair loss
- Hearing loss
- Heavy and irregular menses
- Hoarse voice or voice changes
- Infertility
- Insomnia
- Intolerance to cold
- Joint pain
- Mood swings
- Muscle cramps
- Puffiness of hands and face
- Slowed ankle-reflex relaxation time
- Slowed speech
- Small thyroid gland
- Tinnitus
- Weight gain

continued on next page
BOX 5.1 SIGNS AND SYMPTOMS OF HYPOTHYROIDISM 5-9 (continued)

Mental Symptoms of Hypothyroidism

Brain fog
Confusion
Depression
Difficulty thinking and concentrating
Irritability
Memory impairment
Mental apathy

Symptoms of Severe Hypothyroidism

Carpal tunnel syndrome
Elevated lipids
Hyponatremia can arise within several weeks of onset
Pituitary hyperplasia with or without hyperprolactinemia and galactorrhea
Serum creatine kinase and other muscle/hepatic enzymes may be abnormal
Sleep apnea

RISK FACTORS

The following factors may predispose a person to hypothyroidism:

• Personal history of a thyroid problem, such as goiter or nodules.1
• Personal history of postpartum thyroiditis or autoimmune thyroid disease (eg, Hashimoto thyroiditis*).
• Family history of thyroid disease, which increases the risk of developing autoimmune thyroid disease. Studies have shown that up to 60% of first-degree relatives of people with autoimmune thyroid disease also have thyroid antibodies, which may signal future development of an autoimmune thyroid condition.10
• Being Female; women are five to eight times likelier than men to develop hypothyroidism.8 Women with positive antibodies and high thyroid-stimulating hormone (TSH) levels have a higher annual risk (4%) of developing hypothyroidism than those with either factor alone (2% to 3%).5
• Age; hypothyroidism is more common over the age of 60.1 As many as one in four patients in long-term care may have undiagnosed hypothyroidism.11
• Autoimmune diseases and endocrine disorders, both in personal or family history, such as lupus, Sjögren syndrome, pernicious anemia, type 1 diabetes, celiac disease, rheumatoid arthritis, Addison disease, or polycystic ovary syndrome.1
• Turner syndrome, a genetic disorder in females.1
• Being pregnant or up to 6 months postpartum1; additionally, other hormonal imbalances and menopause can initiate thyroid imbalances.
• Receiving radiation to the thyroid, neck, or chest.1

ETIOLOGY

Biological Causes of Hypothyroidism

Hashimoto disease, otherwise known as chronic lymphocytic thyroiditis, autoimmune thyroiditis, or Hashimoto thyroiditis, is an autoimmune disorder12 that is the most common cause of hypothyroidism in the United States.1 Hashimoto disease, which may cause more than half of hypothyroidism cases in North America, is most common in women between 30 and 50 years of age.12

* The Academy of Nutrition and Dietetics has adopted the increasingly common practice of dropping possessive apostrophes from the names of diseases and disorders. Please see Special Note on page xxi for more information.
Inflammation of the thyroid gland from an autoimmune attack can lead to excess thyroid hormone production and a hyperthyroid state known as hashitoxicosis. This inflammation can lead to destruction of the thyroid gland and a gradual inability to produce thyroid hormones. As this develops, the pituitary gland releases TSH in increasing amounts to signal the thyroid to produce more hormones. In some cases, this may lead to a goiter or an enlarged thyroid gland.

Experts suggest that this may be triggered by a buildup of environmental toxins in the thyroid, intestinal permeability, gluten and casein in the diet, drops in blood glucose, stress, and other infections or inflammation causing stimulation of T-helper cells or lymphocytes (Th1 or Th2). Practitioners have found that treating these root causes may halt the disease process, but experimental evidence is needed.

Thyroiditis is inflammation of the thyroid gland that is often caused by autoimmunity or infection. In some cases, hormone secretion is increased, leading to 1 or 2 months of thyrotoxicosis. The damage caused from the ensuing inflammation can lead to hypothyroidism or can resolve spontaneously.

Reidel thyroiditis is a rare, chronic inflammatory disease of the thyroid gland in which dense fibrosis replaces normal thyroid tissue. It may permanently damage the thyroid, causing hypothyroidism in 30% of cases. In de Quervain thyroiditis, the thyroid gland rapidly swells and is painful and tender. The patient experiences no pain in instances of silent thyroiditis.

Ord disease is a type of autoimmune thyroid disease that does not involve development of a goiter. Some researchers consider it to be part of the same disorder as Hashimoto disease.

Postpartum thyroiditis, discussed in more detail in Chapter 17, has three possible outcomes. It may cause transient thyrotoxicosis in the mother, which resolves. It may cause transient hypothyroidism following transient thyrotoxicosis in the mother, and both subsequently resolve. Last, it may develop into a type of Hashimoto thyroiditis in which hypothyroidism in the postpartum period progresses into overt hypothyroidism.

Genetic causes; several genes affect normal fetal thyroid development, with some decreasing even a normal thyroid’s ability to produce thyroid hormones. Congenital hypothyroidism, in which a child is born with partial or total loss of thyroid function, occurs when there are mutations in the DUOX2, PAX8, SLC5A5, TG, TPO, TSHB, and TSHR genes. This affects one in every 3,000 to 4,000 newborns, is inherited 15% to 20% of the time, and can lead to intellectual disabilities and growth failure. For this reason, most newborns in the United States are screened for hypothyroidism, as early treatment can prevent complications (this is discussed in further detail in Chapter 17). The vast majority of cases of congenital hypothyroidism have unknown genetic causes.

Pituitary and hypothalamic disorders; normally, the hypothalamus stimulates the pituitary gland to make TSH. Malfunctions in these mechanisms can result in hypothyroidism. It is believed that as many as 1 in 10 adults worldwide has an adenoma, or benign tumor of the pituitary gland, yet many of these tumors do not cause harm or secrete hormones (those with no clinical impact are commonly referred to as incidentalomas). Rarely, pituitary
How to Dose Medications

When a health professional initiates thyroid replacement therapy, the ATA recommends that a “patient’s weight, lean body mass, pregnancy status, etiology of hypothyroidism, degree of TSH elevation, age, and general clinical context, including the presence of cardiac disease,” along with the TSH goal, should be taken into account. Patients with a goal of TSH suppression generally require more thyroid hormone replacement; those whose thyroids have been completely removed generally need more than Hashimoto patients. Patients who have received radioactive iodine ablation for Graves disease may need varying amounts depending on residual thyroid function post-treatment. Patients who have experienced a significant change in weight, who are aging, who are pregnant, or who have changed their thyroid dosage should have blood work reassessed in 4 to 6 weeks. Table 6.2 includes initiation and dosing recommendations for several subsets of patients.

<table>
<thead>
<tr>
<th>Patient Profile</th>
<th>L-T4 Dose (per kg body weight)</th>
<th>Thyroid-Stimulating Hormone Goal</th>
<th>How to Initiate and Progress Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal endogenous thyroid function in middle-aged patients</td>
<td>1.6-1.8 µg/kg actual body weight 2.0-2.1 µg/kg for some patients Some use ideal vs actual body weight</td>
<td>0.5-2.0 mIU/L for good balance</td>
<td>Initiate at full dose</td>
</tr>
<tr>
<td>Thyroid cancer patients</td>
<td>2.1-2.7 µg/kg</td>
<td>Thyroid-stimulating hormone (TSH) suppression, or individualized to address prognosis/type of cancer</td>
<td>Initiate at full dose</td>
</tr>
<tr>
<td>Mild hypothyroidism: serum TSH ≤ 10 mIU/L in young and middle-aged patients</td>
<td>–</td>
<td>0.5-2.0 mIU/L for good balance</td>
<td>Initiate at full dose, usually 25-75 µg/d (not weight-based therapy)</td>
</tr>
<tr>
<td>Elderly patients over age 65 (less lean body mass, less hormone need)</td>
<td>–</td>
<td>Higher serum TSH goal range 4-6 mIU/L in those >70 years of age</td>
<td>Start low and go slow: generally initiate at 50 µg, and adjust by 12.5-25 µg/d up or down depending on TSH</td>
</tr>
<tr>
<td>Cardiac patients with coronary artery disease</td>
<td>–</td>
<td>0.5-3.5 or 4 mIU/L, per American Thyroid Association</td>
<td>Start low and go slow: gradual increases based on TSH and symptoms, with adjustments of 12.5-25 µg/d</td>
</tr>
<tr>
<td>Patients who are severely hypothyroid after treatment for hyperthyroidism</td>
<td>Variable</td>
<td>0.5-3.5 or 4 mIU/L</td>
<td>Initiate full dose</td>
</tr>
</tbody>
</table>
of antidepressants to changes in the brain’s metabolism of thyroid hormones, suggesting that the use of liothyronine (L-T3) in conjunction with antidepressants may be beneficial.57 This has been further studied and confirmed in human studies.58,59

Low thyroid hormone levels can cause residual symptoms that linger post-treatment.60 Graves disease (GD) patients have been shown to have a lower quality of life up to 21 years following treatment for hyperthyroidism,61 and research has shown that 35.6% of patients with GD who have had normalized thyroid levels for over 6 months still experience psychological distress and anxiety, and that 95.6% of them were depressed.62 Prevention and education regarding early warning signs, such as changes in sleep, appetite, energy, self-esteem, motivation, concentration, or sexual interest, are recommended.

Nutrition and Lifestyle Approaches to Improve Depression and Mood

Researchers have examined the benefits of several nutrients, supplements, and lifestyle behaviors and their effects on depression. For example, research has shown that increasing n-3 fatty acid consumption helps alleviate depression,63 as does stress management and development of regular sleep patterns.64 Nutrient interventions include consuming foods rich in beta-carotene; vitamin C; vitamin E; lean proteins; and complex vs simple carbs, as well as considering a Mediterranean diet overall.64 St John’s wort has been used as a supplement to manage depression, but it is important to keep in mind that these supplemental therapies should be administered under qualified medical supervision.64 Most interventions are not recommended in pregnant or lactating women, and practitioners should exercise caution when working with patients with certain medical conditions or patients taking additional medications. If the RDN or other health care provider wishes to recommend complementary or alternative therapies, more thorough investigation into side effects, food–drug and herb–drug interactions, and contraindications is advised and should be individualized to the patient with the medical team.

FIBROMYALGIA

Fibromyalgia, a chronic and disabling condition characterized by pain, fatigue, stiffness, and multiple tender points, afflicts 2% to 4% of the North American population.65 It is thought that central nervous system dysfunction and lifestyle factors, such as sleep difficulties, stress, infection, injury, nervous system changes, changes in muscle metabolism, and a family history, contribute to its development.66

In fibromyalgia, a constant low-level activation of the coagulation system has been observed in limited research.67 This creates a soluble fibrin monomer (SFM) that coats the inside of blood vessels, limiting oxygen and nutrients from entering the cells. Decreased oxygen may lead to pain, fatigue, and brain fog. SFM development can lead to bacterial growth and infection. These effects can make thyroid hormone less efficient68; however, it is important to note that this is a speculative theory.

Some alternative medicine practitioners believe that people with fibromyalgia can be cured or improved by treating the individual with high doses of triiodothyronine (T3) along with nutritional supplements, diet, and exercise.69,70 This protocol can be dangerous, however, and is not accepted as a treatment practice. The high T3 dose utilized in one study may induce hyperthyroidism, but a lower dose could still provide benefits with a decreased risk of iatrogenic hyperthyroidism. Fibromyalgia has some links to thyroid disease, including the following:

- One out of every three fibromyalgia patients also has autoimmune thyroid disease.71
SECTION 6
Appendixes

APPENDIX A Web, Print, and Other Resources 210

APPENDIX B Drugs, Foods, Supplements, and Conditions Affecting Thyroid Medication Absorption and Thyroid Function Tests 214

APPENDIX C Goitrogens 215

APPENDIX D Low-Iodine Diet 216

APPENDIX E Sample Food Plans (Low-Glycemic, Gluten-Free, Anti-Inflammatory, Autoimmune Paleo) 220

APPENDIX F Self-Check of the Neck 224

APPENDIX G Quick Guide to Follow-Up Cadence and Monitoring Recommendations 225
Sample Food Plans
(Low-Glycemic, Gluten-Free, Anti-Inflammatory, Autoimmune Paleo)

LOW-GLYCEMIC SAMPLE 3-DAY DIET

There are different methods for designing a low-glycemic food plan. The sample 3-day menus for the low-glycemic diet provided here contain:

- Unlimited carbohydrates from low-glycemic vegetables, such as broccoli, asparagus, spinach, chard, kale, cabbage, bok choy, arugula, sea vegetables, and so on. (Note: many of these are goitrogens, so cooking would be preferable to consuming raw.)
- Up to ½ cup of whole grains, such as brown, black, and red rice; quinoa; amaranth; buckwheat; or teff, or up to ½ cup of starchy vegetables such as winter squash, peas, potatoes, corn, and root vegetables, per day.
- Up to ½ cup of legumes, such as lentils, chickpeas, split peas, edamame, black beans, or navy beans per day.
- Up to ½ cup of berries, such as blueberries, cherries, blackberries, and raspberries, per day and/or one to two pieces of apple, pear, or stone fruit, such as plum, peach, or nectarine.
- From 30 to 50 grams of fiber per day.

<table>
<thead>
<tr>
<th>BREAKFAST</th>
<th>LUNCH</th>
<th>SNACK</th>
<th>DINNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY 1</td>
<td>Salad made with ½ can rinsed white beans served over a bed of arugula and topped with 1 small can artichoke hearts; drizzle with extra virgin olive oil and balsamic vinegar and sprinkle with black pepper</td>
<td>1 ounce almonds</td>
<td>4 ounces salmon filet served with ½ cup sweet potato and steamed asparagus drizzled with 2 teaspoons olive oil</td>
</tr>
<tr>
<td>2 hard-boiled eggs served on a bed of arugula with ½ cup raspberries on the side</td>
<td>Smoked salmon served with sliced Kirby cucumbers, tomatoes, kalamata olives, and hummus over a bed of romaine lettuce</td>
<td>Turkey slices rolled up in lettuce leaves</td>
<td>Quick sauté over medium heat: ½ cup precooked brown rice; prewashed spinach and kale; 2 teaspoons olive oil; chopped garlic; and 4 ounces canned chicken</td>
</tr>
<tr>
<td>DAY 3</td>
<td>½ cup cooked lentil soup with a side salad, ½ avocado, and sliced tomatoes and ½ sliced peach</td>
<td>Celery with almond butter</td>
<td>Chopped tofu and bok choy sautéed in tamari sauce and served over ½ cup quinoa</td>
</tr>
<tr>
<td>Egg-white omelet made with spinach, ¼ avocado, and sliced tomato, served with ½ cup blueberries</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This edition of *The Health Professional’s Guide to Management of Thyroid Disease* offers readers 8 hours of Continuing Professional Education (CPE) credit. Readers may earn credit by completing the interactive online quiz at the following website: https://publications.webauthor.com/health-pro-guide-thyroid
Index

Page numbers followed by *f* indicate figures, page numbers followed by *t* indicate tables, and page numbers followed by *b* indicate boxes.

AACE. See American Association of Clinical Endocrinologists

absorption, drug, 53, 214

Academy of Nutrition and Dietetics, 12, 199

Critical Illness Evidence-Based Nutrition Practice Guidelines, 29

Achilles reflex test, 66

acupuncture, 191, 195

Adequate Intake (AI), 33–34

administration, food/nutrient

hyperthyroidism, 111

hypothyroidism, 62

thyroid nodules/thyroid cancer, 146

adolescents, Graves disease in, 181–182

adrenal fatigue, 20

adrenal insufficiency. See cortisol dysregulation

aerobic exercise, 21

AI. See Adequate Intake

AICR. See American Institute for Cancer Research

AITD. See autoimmune thyroiditis

AJCC. See American Joint Committee on Cancer

alcohol ablation, for thyroid cancer, 142

allergenic foods, 24

alpha lipoic acid, 25

alternatives therapies

for hyperthyroidism, 131–132

for hypothyroidism, 87–89

for thyroid cancer, 166–167

American Academy of Family Physicians, 48

American Academy of Pediatrics, 181

American Association of Clinical Endocrinologists (AACE), 4, 48, 52, 54

American Cancer Society, 136

American College of Physicians, 48

American College of Sports Medicine, 20b

American Institute for Cancer Research (AICR), 145

American Joint Committee on Cancer (AJCC), 140

American Society for Reproductive Medicine, 171

American Thyroid Association (ATA), 172

Guidelines for the Treatment of Hypothyroidism, 15, 54, 58–59

Practice Guidelines for Hypothyroidism in Adults, 38

amino acid precursors, 198

amiodarone-induced thyrotoxicosis, 107

amitriptyline, 199

anaplastic carcinoma, 138, 176

anatabine, 89

Anatabloc, 89

anemias, laboratory assessment of, 65, 65t

animal fats, and weight management, 20b

anthropometric assessment

hyperthyroidism, 113, 128

hypothyroidism, 63–64, 83

thyroid cancer, 147, 163

antidepressants, 26

anti-inflammatory diet, 122, 123, 207, 222

antioxidants, and weight management, 25

antithyroid drugs (ATDs), 99, 100, 103–104, 104b, 105, 106, 122, 177

and postpartum period, 176

and pregnancy, 175

use in children, 181, 182b–183

L-arginine, 197

Armour Thyroid

conversion of dosages, 56t–57t

for hypothyroidism, 52t, 77

artificial sweeteners, 45

ATA. See American Thyroid Association

ATDs. See antithyroid drugs
autoimmune diseases, 198–199
and hypothyroidism, 43–44
thyroid diseases, 43
triggers for, 77
autoimmune paleo diet, 199, 223
autoimmune thyroiditis (AITD), 94
basal energy expenditure (BEE), 29–30
B-complex vitamins, 121
BEE. See basal energy expenditure
behavior
and hyperthyroidism, 112b, 125
and hypothyroidism, 63b, 79
and thyroid nodules/thyroid cancer, 146b, 160
for weight loss, 22–23
behavioral–environmental diagnosis
hyperthyroid nutrition-related, 120b
hypothyroid nutrition-related, 71b–72b
thyroid nodule/cancer nutrition-related, 154b
Belviq, 25
benzodiazepines, 199
beta-blockers
for hyperthyroidism, 99, 100, 102, 105, 107
use in pediatric patients, 183b
and weight gain, 26
BIA. See bioelectrical impedance analysis
bioactive substances, 81
and hyperthyroidism, 117b, 126b
and hypothyroidism, 68b, 80b
and thyroid nodule/cancer, 151b, 161b
biochemical domain
and hyperthyroid nutrition, 119b
and hypothyroid nutrition, 70b
and thyroid nodule/cancer nutrition, 153b
bioelectrical impedance analysis (BIA), 64, 147
bioidentical progesterone, 24
biomarkers, 18–19
biotin, 201
biphenol-A (BPA), 45
black cohosh, 191
block-and-replace therapy, 103, 175
blood glucose
balancing, 76
laboratory assessment of, 65, 66b, 114, 148
botanicals
adaptogenic, 198
for hyperthyroidism, 132
for hypothyroidism, 88
for thyroid cancer, 166–167
BPA. See biphenol-A
bromocriptine, 106, 177
bugleweed, 132
bupropion, 25, 26
cabergoline, 106, 177
cabozantinib, for thyroid cancer, 142
calcitriol, 196
calcium, 88b, 121, 125, 192, 196
calcium carbonate, 192
calcium citrate, 192
calorie-controlled diet, 73
CancerCare, 156
Caprelsa, for thyroid cancer, 142
carbohydrates, 122, 197–198
–controlled diet, 73, 199
overrestriction, avoiding, 76
carnitine. See l-carnitine
l-carnitine, 131
celiac disease, 137, 198, 199
cellular hypothyroidism, 45
central hypothyroidism, 48
CFS. See chronic fatigue syndrome
CH. See congenital hypothyroidism
chasteberry, 192, 197
chemotherapeutic agents, and hypothyroidism, 45
chemotherapy, for thyroid cancer, 142
children, thyroid disease in, 179
Graves disease, 181–182, 182b–183b
hypothyroidism, treatment goals/monitoring, 181
overt hypothyroidism, 179–180
subclinical hypothyroidism, 180–181
thyroid cancer, 184–186, 185b
choriocarcinoma, and hyperthyroidism, 96, 106
chromium, 25, 76
chromium picolinate, 88b, 193
chronic fatigue syndrome (CFS), 195–196
chronic lymphocytic thyroiditis (CLT), 94
cimetidine, 200
circadian rhythm, eating according to, 20b
CLA. See conjugated linoleic acid
INDEX

clinical diagnosis
hyperthyroid nutrition-related, 119b
hypothyroid nutrition-related, 70b
thyroid nodule/cancer nutrition-related, 153b
CLT. See chronic lymphocytic thyroiditis
cocount oil, 74
coenzyme Q10 (CoQ10), 167
coffee, 88b
cognitive behavioral therapy, 195
cold lasers. See low-level laser therapy (LLL T)
Cometriq, for thyroid cancer, 142
complementary/alternative medicine use, 194
hyperthyroidism, 112
hypothyroidism, 62
thyroid nodules/thyroid cancer, 146
compounded thyroid hormones, 54–55, 77
computed tomography (CT), 185
congenital hypothyroidism (CH), 37, 44, 179, 181
conjugated linoleic acid (CLA), 25
consumptive hypothyroidism, 45
Contrave, 25
cold compresses, 195
coordination of nutrition care, 161
copper, 74
CoQ10. See coenzyme Q10
corticosteroids, 197
for drug-induced thyrotoxicosis, 107
for Graves ophthalmopathy, 107
cortisol, 7b, 16
production and function of, 18t
and stress, 22
weight regulation and relationship to thyroid, 18t
cortisol dysregulation, 20b, 197–198, 199
counseling, nutrition
hyperthyroidism, 127
hypothyroidism, 82
thyroid nodules/cancer, 161
CT. See computed tomography
curcumin, for hypothyroidism, 87
Cytomel, 185
conversion of dosages, 56t–57t
for hypothyroidism, 51t, 77
dairy, avoidance of, 77
D-chiro-inositol (DCI), 193
DCI. See D-chiro-inositol
dehydration, 32
dehydroepiandrosterone (DHEA), 22
delivery, food/nutrient
hyperthyroidism, 126–127
hypothyroidism, 81
thyroid nodules/cancer, 161
depression, 193–194
and weight management, 22–23
de Quervain thyroiditis, 44, 95
desiccated thyroid extract medications, 52t, 54, 87, 174
desmopressin, 197
DEXA. See dual energy x-ray absorptiometry
DHEA. See dehydroepiandrosterone
Diabetes Mellitus Toolkit, 199
diagnosis, xxiii
controversy in, 6
criteria, 4–6, 5t
of hyperthyroidism, 6, 99–100
of hyperthyroidism in pregnancy, 174
of hypothyroidism, 6, 48–49
of hypothyroidism in pregnancy, 172
nutrition. See nutrition diagnosis
of thyroid nodules/thyroid cancer, 139, 184–185
diagnostic tests, 175–176
hyperthyroidism, 115
hypothyroidism, 66–67
molecular, 139
thyroid nodules/thyroid cancer, 149
diet, 207
anti-inflammatory diet, 122, 123, 207, 222
for autoimmune conditions, 199
autoimmune paleo diet, 199, 223
calorie-controlled, 73
carbohydrate-controlled diet, 73, 199
elimination diet, 24, 122–123
Fertility Diet, 190
for fibromyalgia, 195
gluten-free diet, 190
high-calorie diet, 122
high-protein/low-fat diet, 207
for hyperthyroidism, 126b
and hypothyroidism, 45
for hypothyroidism, 80b
iodine, 37–38
iodine-deficient diet, 155
iron-rich diet, 190
low-glycemic diet, 19b, 20b, 220
low-glycemic/high-fiber diet, 193
low-iodine diet. See low-iodine diet
low-oxalate diet, 77
modified texture diet, 79
optimization, and weight management, 19b–20b
for perimenopause and menopause, 191
for polycystic ovary syndrome, 193
for thyroid nodules/cancer, 160b
Dietary Reference Intakes (DRIs), 37
for estimating fluid requirements, 32t
vitamin and mineral requirements, 33, 34
differentiated thyroid cancer (DTC), 137, 176
in children, 184
treatment goals, 141
diffuse toxic goiter. See Graves disease (GD)
di-indolemethane (DIM), 191
diodothyronine (T2), 3, 19b, 36
DIM. See di-indolemethane
dosage, medication
antithyroid drugs, 103
hypothyroidism, 55–56, 55t, 56t–57t, 58
levothyroxine, 179t
methimazole, 182t
doxepin, 199
DRIs. See Dietary Reference Intakes
DTC. See differentiated thyroid cancer
dual energy x-ray absorptiometry (DEXA), 23, 66, 115
duloxetine, 195
dysbiosis, and weight management, 25
eating
according to circadian rhythm, 20b
nighttime, avoiding, 22
education, nutrition
hyperthyroidism, 127
hypothyroidism, 82
thyroid nodules/cancer, 161
elderly, thyroid disease in, 178–179
electrolyte imbalances, 33
elimination diet, 24, 122–123
endemic goiter, 37, 45. See also goiter
food and nutrition-related history, 62b–63b, 83b
nutrition monitoring and evaluation, 82, 83b–84b
endurance training, 20b
energy balance
and hyperthyroid nutrition, 117b
and hypothyroid nutrition, 68b
and thyroid nodule/cancer nutrition, 151b
energy, overrestriction of, 76
energy requirements, 29
activity and stress/injury factors, 30t
calculation of, 29–30
indirect calorimetry, 29
quick estimation of energy needs, 30, 30t
environmental toxins
and hyperthyroidism, 96
and hypothyroidism, 45
Epstein-Barr virus, 46, 97
essential fatty acids, for hypothyroidism, 87
estradiol, 24
estrogen, 18t, 24, 190, 191
eszopiclone, 199
ETA. See European Thyroid Association
European Thyroid Association (ETA), 54, 170
euthyroid hyperthyroxinemia, 97
euthyroidism, definition of, 58
Euthyrox, for hypothyroidism, 77
Evidence Analysis Library, 199
exercise. See physical activity
exophthalmos, 94
external beam radiation, for thyroid cancer, 142
familial dysalbuminemic hyperthyroxinemia, 97
fast foods, 207
fast thyroid. See hyperthyroidism
fats
healthy, 74, 199
and weight regulation, 16
FDA. See US Food and Drug Administration
ferritin, 65, 201
fertility
infertility, 189–190
nutrition and lifestyle interventions for, 190
thyroid disease screening in, 170–171
Fertility Diet, 190
fiber, 191, 192
for hyperthyroidism, 126b
for hypothyroidism, 80b, 88b
-rich foods, 74
for thyroid nodules/cancer, 161b
and weight management, 19b
fibromyalgia, 194–195
finasteride, 200
fine needle aspiration (FNA) biopsy, 139, 176, 184
flavonoids, 88b
INDEX

flaxseed, 191
fluid intake, 122
 assessment of, 73
 for hyperthyroidism, 117b, 126b
 for hypothyroidism, 68b, 80b, 82
 for thyroid nodules/cancer, 151b, 161b
fluid requirements, 31–32
 estimation, Dietary Reference Intakes, 32t
 fluid volume deficit, 32
fluoride, for hyperthyroidism, 131
FNA. See fine needle aspiration biopsy
folate deficiency, 65
folic acid, 190
follicular cancer/carcinoma, 138, 185b
food–drug interactions, and hypothyroidism medications, 53
food intake
 hyperthyroidism, 111b, 126b
 hypothyroidism, 62b, 81b
 and levothyroxine absorption, 214
 thyroid nodules/cancer, 145b, 161b
 tracking, 20b
food intake diagnosis
 hyperthyroid nutrition-related, 117b–118b
 hypothyroid nutrition-related, 68b–69b
 thyroid nodule/cancer nutrition-related, 151b–152b
food sensitivity, and weight management, 24
free thyroxine (FT4), 6, 7b–8b, 10t, 48, 99, 100, 173, 174, 180
free triiodothyronine (FT3), 6, 8b, 10t, 49, 99, 100, 174
fructose, and weight management, 20b
FT3. See free triiodothyronine
FT4. See free thyroxine
functional domain
 and hyperthyroid nutrition, 119b, 120b
 and hypothyroid nutrition, 70b, 72b
 and thyroid nodule/cancer nutrition, 153b, 154b
gamma oryzanol, 88b
gastric emptying time, 66
GD. See Graves disease
genetics
 and hyperthyroidism, 94
 and hypothyroidism, 44
 and thyroid cancer, 137
germinal mutations, screening for, 139
gestational hyperthyroidism, 175
GH. See growth hormone
ghrelin, 15, 16, 20b
 production and function of, 16t
 weight regulation and relationship to thyroid, 16t
Ginkgo biloba, 132
glandulars, 52t
glucocorticoids, for Graves ophthalmopathy, 106–107
glutathione, for hypothyroidism, 87
gluten, 76, 123
gluten-free diet, 199, 221
glyphosate, 19b
GO. See Graves ophthalmopathy
goiter, 36, 45, 58, 122, 193
 in children, 180
 medical nutrition therapy for, 79
 medical treatments, and hypothyroidism, 45
 nutrition monitoring and evaluation, 82, 83b–84b
 nutrition prescription, 80b–81b
 toxic multinodular. See toxic multinodular goiter (TMNG)
goitrogens, 37, 45, 76, 79, 82, 103, 131–132, 215
 and antithyroid drugs, 122
 and weight management, 19b
Graves dermopathy, 94–95
Graves disease (GD), 37, 38, 55, 92, 93, 96, 97, 99, 107b–108b, 194, 198
 in children/adolescents, 181–182
 diagnosis of, 99, 100
 food and nutrition-related history, 111b–112b, 128b
 and hyperthyroidism, 94–95
 and iodide preparations, 123
 laboratory assessment, 113, 113t
 medical treatments, and hypothyroidism, 45
 in pediatric patients, treatment concerns, 82b–183b
 postpartum, 176
 in pregnancy, 175, 176
 treatment for overt hypothyroidism in, 102–106
Graves ophthalmopathy (GO), 93, 94
 treatment for hyperthyroidism in, 106–107
growth hormone (GH), 16, 20b
 low, 24
 production and function of, 17t
 weight regulation and relationship to thyroid, 17t
gut microbiota, and weight management, 25
hair loss, 200–201
Harris-Benedict Equation (HBE), 29–30
Hashimoto thyroiditis, 43, 45, 46, 49, 58, 87, 123, 198
 alternatives therapies for, 89
 diagnosis of, 99
 diagnostic tests, 66
 food and nutrition-related history, 62b–63b, 83b
 and gluten, 76
and hypothyroidism, 43
intestinal permeability in, 77, 78
and iodine, 35, 37, 38
laboratory assessment, 64, 64t
with lactose intolerance, 77
medical nutrition therapy for, 77, 78b, 79
nutrition monitoring and evaluation, 82, 83b–84b
nutrition prescription, 80b–81b
and oxalates, 77
and thyroid nodules, 137
and vitamin D deficiency, 75
hashitoxicosis, 44, 95
HBE. See Harris–Benedict Equation
HCTZ. See hydrochlorothiazide
health practitioners, advice for, 12–13
heart palpitations, 201
Helicobacter pylori, 97
hemoglobin values/interpretation for anemia, 65, 65t
herbs, 198, 199
for hyperthyroidism, 132
for hypothyroidism, 88
for thyroid cancer, 166–167
high-calorie diet, 122
high-intensity interval training (HIIT), 20b
high-protein/low-fat diet, 207
HIIT. See high-intensity interval training
history, food and nutrition-related
hyperthyroidism, 111b–112b, 128b
hypothyroidism, 62b–63b, 83b
thyroid nodules/thyroid cancer, 145, 145b–147b, 163b
hops, 191
hormone replacement therapy (HRT), 24, 58, 110, 176
hormones. See also thyroid hormones
counsels of women, 189–192
involved in weight regulation, 15–16, 16t–17t
laboratory assessment of, 65, 66b, 114, 148
hormone-sensitive lipase (HSL), 15
HPA. See hypothalamic–pituitary–adrenal axis
HPT. See hypothalamic–pituitary–thyroid axis
HRT. See hormone replacement therapy
HSL. See hormone-sensitive lipase
hunger hormone. See ghrelin
Hürthle cell carcinoma, 138
hydration, 74, 192
hydrochlorothiazide (HCTZ), 104–105, 122
hyperemesis gravidarum, 175
hyperglycemia, 114
hypermetabolism, 33
hyperthyroid eye disease. See Graves ophthalmopathy (GO)
hyperthyroidism, 4, 92
biochemical/diagnostic testing frequency, 226–227
biological causes of, 94–96
complications, 101b–102b
diagnosis, 99–100
diagnosis, controversy in, 6
etiology of, 93–97
and fluid requirements, 31
iodine-induced, 36
medical treatments, and hypothyroidism, 45
nonbiological causes of, 96–97
and postpartum period, 176
prevention of, 206
Recommended Dietary Allowance and Tolerable Upper
Intake Level of nutrients for, 33t–34t
risk factors of, 93
severity, assessment of, 100–101
signs and symptoms of, 92–93, 93b
subclinical. See subclinical hyperthyroidism (SH)
and weight gain, 15
hyperthyroidism, in pregnancy, 174
diagnosis and laboratory values, 174
monitoring and follow-up, 175–176
treatment and monitoring, 175
hypocalcemia, 196
hyponatremia, 31
hypoparathyroidism, 196
hypothalamic–pituitary–adrenal (HPA) axis, 197
hypothalamic–pituitary–thyroid (HPT) axis, 2, 3f, 197
hypothalamus, 2, 16, 20b, 196
disorders, and hypothyroidism, 44–45
hyperthyroidism, 4, 7b, 42
biochemical/diagnostic testing frequency, 225–226
biological causes of, 43–45
central, 48
in children, 179–181, 186
congenital, 37, 44
consumptive, 45
diagnosis, 48–49
diagnosis, controversy in, 6
in elderly, 178–179
etiology of, 43–46
and fluid requirements, 31
nonbiological causes of, 45–46
hypermetabolism in, 33
overmedication for, 96–97
INDEX

and physical activity, 21
and postpartum period, 176, 177
prevention of, 206
primary, 48, 50
RDA/AL and UL of nutrients for, 33t–34t
risk factors of, 43
signs and symptoms of, 42b–43b
subclinical. See subclinical hypothyroidism (SCH)
unreiated/undertreated, complications of, 49b
and weight gain, 15
hypothyroidism, in pregnancy, 171–172
diagnosis and laboratory values, 172
medication management, 173
monitoring and follow-up, 174
treatment goals, 173–174
hypovolemia, 32
iatrogenic thyrotoxicosis, 56
IBS. See irritable bowel syndrome
ice packs, 195
IgE. See immunoglobulin E
IgG. See immunoglobulin G
IIH. See iodine-induced hyperthyroidism
immunoglobulin E (IgE), 24
immunoglobulin G (IgG), 24
incidental activities, 20b
Indian Thyroid Society, 170
indirect calorimetry, 29
infants. See children, thyroid disease in
infections
and hyperthyroidism, 97
and hypothyroidism, 45–46
infertility, 189–190
injury, and calculation of energy requirements, 30t
insulin
production and function of, 17t
resistance, and weight management, 23
weight regulation and relationship to thyroid, 17t
intelligence quotient (IQ), and iodine, 39, 177
interferon alpha, and thyrotoxicosis, 107
interleukin-2, and thyrotoxicosis, 107
intestinal permeability in Hashimoto thyroiditis, 77, 78b
iodides, 38, 123, 177
iodine, 36, 74, 79, 82, 88b, 156, 207
as component to thyroid hormones, 36
and dietary concerns, 37–38
fetal, 39
high-dose, 38
and hyperthyroidism, 36–37, 97
and hypothyroidism, 36–37
inorganic, 100
intake, monitoring, 123
intake, recommendations, 39t
level, in thyroid patients, 37b
low-iodine diet. See low-iodine diet
and multivitamins, 122
and pregnancy/lactation, 177–178, 178t
radioactive. See radioactive iodine (RAI)
recommendations, 40
supplementation, 38
throughout life cycle, 39
and thyroid cancer, 206
urinary iodine levels, 177, 178t
iodine-123, 176
iodine-131, 107, 177, 181, 185
iodine deficiency, xxiii, 36, 38
and hypothyroidism, 36, 45, 177, 206
and toxic multinodular goiter, 95
iodine-deficient diet, 155
iodine-induced hyperthyroidism (IIH), 36, 96, 206
ipsilateral thyroid lobectomy, 105
IQ. See intelligence quotient, and iodine
iron, 75, 88b, 195, 201
iron-deficiency anemia, 65
iron-rich diet, 190
irritable bowel syndrome (IBS), 79
isoflavones, 38, 76
knowledge/beliefs/attitudes
hyperthyroidism, 112b, 120b
hypothyroidism, 62b–63b, 71b
thyroid nodule/cancer, 146b, 154b
kombu, 132
laboratory assessment
of anemias, 65, 65t
of hormones, lipids and blood glucose, 65, 66b, 114, 148
hyperthyroidism in pregnancy, 174
hypothyroidism in pregnancy, 172
of micronutrients, 65, 66b, 114b–115b, 148, 149b
of thyroid hormones, 6, 7b–9b, 10b, 64, 64t, 113, 113t, 147–148
lactation
and iodine, 38, 177–178, 178t
and thyroid disease, 176–178
lactic acid bacteria, 196
lactose intolerance, Hashimoto thyroiditis with, 77
LBM. See lean body mass
LC-MS/MS. See liquid chromatography-tandem mass spectrometry assays
LDN. See low-dose naltrexone, for hypothyroidism
lean body mass (LBM), 23
lemon balm, 132
leptin, 15, 16
production and function of, 16t
and stress, 22
weight regulation and relationship to thyroid, 16t
levodopa, and thyrosine, 74
Levo-T, for hypothyroidism, 50t
levothyroxine (L-T4), 4, 6b, 15, 36, 77, 106, 147–148, 162, 171, 175
absorption, 53, 214
brand-name vs generic, 52–53
food–drug interactions, 53
for hypothyroidism, 50, 50t, 52–54
monitoring, 58–59
needs based on age, 179t
and postpartum period, 176
and pregnancy, 173, 174
timing of medication, 53
use in children, 179, 180, 181
use in elderly, 179
and weight management, 19b
levothyroxine sodium, for hypothyroidism, 50t
Levoxyl, for hypothyroidism, 50t, 77
lid-lag, 93
lifestyle practices
autoimmune diseases, 198–199
chronic fatigue syndrome, 196
cortisol dysregulation, 197–198
depression and mood disorders, 194
fertility, 190
fibromyalgia, 195
hair loss, 200–201
hyperthyroidism, 125
hypothyroidism, 79
parathyroid disease, 196
perimenopause and menopause, 190–192
polycystic ovary syndrome, 193
premenstrual syndrome, 192
prevention of thyroid disease, 207b–208b
sleep difficulties, 200
thyroid cancer, 160, 206
life-threatening thyrotoxicosis. See thyroid storm
liothyronine (L-T3), 180, 193
for hypothyroidism, 50, 51t, 54
and weight management, 19b
lipids, laboratory assessment of, 65, 66b, 114, 148
lipoprotein lipase (LPL), 15
liquid chromatography–tandem mass spectrometry (LC-MS/MS) assays, 173
lithium, 193
liver function tests, 114
LLLT. See low-level laser therapy
lorcaserin HCl, 25
low-dose naltrexone (LDN), for hypothyroidism, 58, 87
low-glycemic diet, 19b, 20b, 220
low glycemic/high-fiber diet, 193
low-iodine diet, 39, 141, 156, 157b, 216–219
beverages, 218
breads and cereals, 216
desserts and sweets, 218
fat, 217
fruits and vegetables, 217
meat and meat substitutes, 216
milk and milk products, 217
low-level laser therapy (LLLT), 58
low-oxalate diet, 77
LPL. See lipoprotein lipase
L-T3. See liothyronine
L-T4. See levothyroxine
maca, 191
macronutrients, 73
magnesium, 25, 76, 132, 191, 192
magnolia, for hypothyroidism, 87
males, with low testosterone, 24
maternal hypothyroidism, 174
MCTs. See medium-chain triglycerides
meal replacements, and weight management, 20b
medical food supplements, 81
medical/health history
hyperthyroidism, 116, 128b
hypothyroidism, 67, 84b
thyroid nodules/thyroid cancer, 150, 164b
medical management of hyperthyroidism, 99
drug-induced thyrotoxicosis, 107
goals, 107
Graves ophthalmopathy, 106–107
medications, 103–104, 104b
INDEX

monitoring, 107b–108b
radioactive iodine, 104–105
subclinical hyperthyroidism, 102
surgery, 105–106
thyroid-stimulating hormone-secreting pituitary adenoma, 106
treatment options, 100

medical management of hypothyroidism, 48, 50
absorption, 53
brand-name vs generic levothyroxine, 52–53
combining medications, 54
compounded thyroid hormones, 54–55, 77
conversion of dosages, 56t–57t, 58
dosage, 55, 55t
extreme dosages, avoiding, 56
food–drug interactions, 53
goals, 58
medication options, 50t–52t
monitoring, 58–59
specialist, referral to, 59
timing of medications, 53
TSH levels, monitoring, 59

medical management of thyroid cancer, 139
benign nodules, treatment goals, 141
malignant nodules, treatment goals, 141–142
monitoring, 142–143

medical nutrition therapy (MNT)
for goiter, 79
for Hashimoto thyroiditis, 77, 78b, 79
for hyperthyroidism, 121–123
for hypothyroidism, 72–77
for thyroid cancer, 155

medications
for hair loss, 200
and hyperthyroidism, 112b
and hypothyroidism, 45, 62b
for hypothyroidism, in pregnancy, 173
interfering levothyroxine absorption, 214
sleep, 199–200
that affect thyroid-stimulating hormone, 214
thyroid. See thyroid medications
and thyroid nodules, 146b
weight loss, 25–26

meditation, 197
medium-chain triglycerides (MCTs), 74
medroxyprogesterone, 24
medullary thyroid cancer/carcinoma (MTC), 138, 176, 185b
melatonin, 24, 166, 200
Memorial Sloan Kettering Cancer Center, 166

menopause
nutrition/lifestyle interventions for, 190–192
and weight management, 24
menstrual abnormalities, 189–190
mercury, and hyperthyroidism, 96
metformin, 26, 192
methimazole (MMI)
for drug-induced thyrotoxicosis, 107
for hyperthyroidism, 103, 104b, 105, 106, 108b, 175, 176
use in children, 181, 182t
methylcobalamin, 76
MI. See myo-inositol
micronutrients, laboratory assessment of, 65, 66b, 114b–115b, 148, 149b
Mifflin–St Jeor equation, 29
milnacipran, 195
minerals
for hyperthyroidism, 126b
for hypothyroidism, 81b
repletion of, 124–125
requirements, 33, 35
supplements, 81
for thyroid nodules/cancer, 161b
minoxidil, 200
mitochondria, 16
MMI. See methimazole
MNT. See medical nutrition therapy
modified texture diet, 79
molecular diagnostic tests, 139
monodeiodination, 3, 36
monoiiodothyronine (T1), 3, 36
mood disorders, 193–194
MS. See multiple sclerosis
MTC. See medullary thyroid cancer/carcinoma
multiminerals, 81, 122
multiple sclerosis (MS), 198
multivitamins, 74, 88b, 122
myo-inositol (MI), 193
n-3 fatty acids, 74, 193, 194, 195, 199
n-3 fish oil, 25
n-6 fatty acids, 195
NAC. See N-acetylcysteine
N-acetylcysteine (NAC), 193

238
naltrexone, 25, 79
 for hypothyroidism, 58, 87
National Center for Complementary and Integrative Health, 195
National Institutes of Health (NIH), 39, 156, 195
Natural Medicines Comprehensive Database, 88, 195
Natural Medicines Database, 74
Nature-Throid
 conversion of dosages, 56t–57t
 for hypothyroidism, 52t, 77
NCP. See Nutrition Care Process
near-total thyroidectomy, 105, 143
neck, self-check of, 224
Nexavar, for thyroid cancer, 142
NIH. See National Institutes of Health
nodules. See thyroid nodules
nonbioidentical progesterone, 24
Novothyrox, for hypothyroidism, 50t
nuclear power plants, 45, 137, 206
nuclear scan, 100
nutrient deficiencies, and weight management, 25
nutrient intake
 hyperthyroidism, 111b, 118b
 hypothyroidism, 62b, 69b
 thyroid nodules/cancer, 145b, 151b–152b
nutritional status/outcomes
 in adult hyperthyroid patients, 129
 in hypothyroid patients, 84
 in thyroid cancer patients, 164
nutrition assessment for hyperthyroidism, 111
 anthropometric assessment, 113, 128b
 biochemical data, medical tests, and procedures, 113–115, 128b
 client history, 116, 128b
 food and nutrition-related history, 111b–112b, 128b
 physical findings, 115, 128b
nutrition assessment for hypothyroidism, 62
 anthropometric assessment, 63–64, 83b
 biochemical data, medical tests, and procedures, 64–67, 83b
 food and nutrition-related history, 62b–63b, 83b
 physical findings, 67, 83b
nutrition assessment for nodules/thyroid cancer, 145
 anthropometric assessment, 147, 163b
 biochemical data, medical tests, and procedures, 147–150, 163b
 client history, 149b, 150, 164b
 food and nutrition-related history, 145b–147b, 163b
 physical findings, 149–150, 163b–164b
nutrition care, 10–12
Nutrition Care Process (NCP), 11b, 12, 68, 81, 111, 145, 161
nutrition diagnosis
 hyperthyroidism, 116, 117b–120b
 hypothyroidism, 68, 68b–72b
 thyroid cancer, 150–151, 151b–154b
nutrition intervention for hyperthyroidism, 120–121
 lifestyle and behavior changes, 125
 medical nutrition therapy, 121–123
 planning, 121
 repletion of vitamin and mineral deficits, 124
 steps and goals, 121, 121b
 strategies, 126–127
nutrition intervention for hypothyroidism, 72
 goiter, 79
Hashimoto thyroiditis, 77, 78b, 79
 lifestyle and behavior changes, 79
 medical nutrition therapy, 72–77
 planning, 72
 steps and goals, 72, 73b
 strategies, 81–82
nutrition intervention for thyroid nodules/cancer, 155
 complications of radioactive iodine, 158b–159b
 lifestyle and behavior changes, 160
 medical nutrition therapy, 155
 radioactive iodine and low-iodine diet, 156, 157b
 steps and goals, 155–156
 strategies, 161–162
nutrition monitoring and evaluation
 hyperthyroidism, 127, 128b, 129
 hypothyroidism, 82, 83b–84b
 thyroid cancer, 163b–164b
nutrition objectives
 hyperthyroidism, 110–111
 hypothyroidism, 61
 thyroid cancer, 144–145
nutrition prescription
 hyperthyroidism, 125, 126b
 hypothyroidism, 79, 80b–81b
 thyroid nodules/cancer, 160b–161b
obesity, and thyroid cancer, 137
octreotide, 197
OH. See overt hypothyroidism
oral/nutrition support intake
 and hyperthyroid nutrition, 117b
 and hypothyroid nutrition, 68b
 and thyroid nodule/cancer nutrition, 151b
Ord disease, and hypothyroidism, 44
orlistat, 25, 192–193
ovarian teratoma. See struma ovarii
overhydration, 32
overt hyperthyroidism, 92
diagnosis of, 99
signs and symptoms of, 92
treatment for, 102–106
overt hypothyroidism (OH), 21, 189, 193
in children, 179–180
and fertility, 170, 171
in pregnancy, 170, 171–172, 173, 174
oxalates, 77
Oxalobacter formigenes, 77
oxalyl-CoA decarboxylase, 77
Panax ginseng, 192
Pancreas, 2
parathyroid disease, 196
parathyroid hormone (PTH), 196
patient/client–centered measures, nutrition–related
hyperthyroidism, 112
hypothyroidism, 63
thyroid nodules/thyroid cancer, 147
PCOS. See polycystic ovary syndrome
perimenopause, nutrition/lifestyle interventions for, 190–192
personal history
hyperthyroidism, 116, 128
hypothyroidism, 67, 84
thyroid nodules/thyroid cancer, 150, 164
PES (Problem, Etiology, and Signs and Symptoms)
statements
hypothyroid nutrition-related diagnosis, 68b–72b
pesticides, 19b
phentermine, 25
phosphatidylserine, 87, 198, 200
phosphorus, 121
physical activity, 191, 192, 196, 197, 207
and calculation of energy requirements, 30t
and hyperthyroidism, 112b, 120b
for hyperthyroidism, 125
and hypothyroidism, 63b, 72b
for hypothyroidism, 79
for polycystic ovary syndrome, 193
and thyroid, evidence regarding, 21
and thyroid nodule/cancer, 146b–147b, 154b
propylthiouracil (PTU), for hyperthyroidism, 103, 104b, 175, 176
protein, 77, 122, 193, 197
- intake, and weight management, 16, 20b
- plant-based, 199
- requirements, 31, 31t
proteolytic enzymes. *See* systemic enzymes
PTH. *See* parathyroid hormone
PTU. *See* propylthiouracil, for hyperthyroidism
pyridoxine. *See* vitamin B6
Qsymia, 25
quercetin, 166, 195
radioactive iodine (RAI), 122, 206
- complications and nutritional strategies, 158b–159b
 - for hyperthyroidism, 37, 39, 55, 100, 104–105
 - and pregnancy, 176
 - for thyroid cancer, 141–142, 150, 156, 157, 160
 - use in children/pediatric patients, 183b–184b, 184, 185
radionuclide scanning, 139
RAI. *See* radioactive iodine
ramelteon, 199
RDNs. *See* registered dietitian nutritionists
Recommended Dietary Allowance (RDA), 33t–34t, 37
red ginseng, 192
registered dietitian nutritionists (RDNs), 10
resistance training, 20b
resting energy metabolism, 23
resting metabolic rate (RMR), 23, 29, 66, 79
restorative yoga, 20b
resveratrol, 166, 191
reverse T3 (RT3), 3, 7b, 8b–9b, 10t, 18–19, 36, 49
rheumatoid arthritis, and physical activity, 21
Riedel thyroiditis, 44, 95
RMR. *See* resting metabolic rate
Royal College of Physicians of London, 48
RT3. *See* reverse T3
salivary cortisol tests, 197
saturated fats, and weight management, 20b
Saxenda (liraglutide) injection, 25
SCH. *See* subclinical hypothyroidism
seaweed, 132
secondary hyperparathyroidism, 196
selenium, 74–75, 79, 94, 123, 174
serotonin, and stress, 22
serum thyroxine. *See* total thyroxine (TT4)
sodium, 77, 192
sorafenib, for thyroid cancer, 142
soy consumption, 76
- and thyroid cancer, 155
- and thyroid medication, 19
soy isoflavones, 38, 76
Spanish Society of Endocrinology and Nutrition, 170
specialists, referral to, 59, 79, 125, 162
spices, 199
spironolactone, 200
steady-state exercise, 20b
St John’s wort, 192, 194
stomach acid, and weight management, 25
strength training, 20b, 21, 79, 191
stress
- and calculation of energy requirements, 30t
- and hyperthyroidism, 96
- and hypothyroidism, 45
- management, 195
- and weight management, 22
struma ovarii, and hyperthyroidism, 96, 106
subclinical hyperthyroidism (SH), 92
diagnosis of, 100
- signs and symptoms of, 92
INDEX

treatment of, 102
subclinical hypothyroidism (SCH), 5, 42, 50, 193, 198
children with, 180–181
in elderly, 179
and fertility, 170, 171
in pregnancy, 170, 171, 172, 173, 174
subclinical thyrotoxicosis, 102
sugar, and weight regulation, 16
supplements, 207
for estrogen dominance, 191
for hair loss, 201
for hyperthyroidism, 132
for hypothyroidism, 88, 88b
interfering levothyroxine absorption, 214
iodine, 38
medical food, 81
multivitamin-mineral, 122
for polycystic ovary syndrome, 193
for premenstrual syndrome, 192
for thyroid cancer, 166–167
and thyroid medication, 19, 53
vitamin/mineral, 81, 124–125
and weight management, 25
surgery. See also thyroidectomy
in children, 181, 186
for goiter, 122
for hyperthyroidism, 105–106
for thyroid cancer, 141, 176
swallowing, palliative care for, 122
Synthroid
conversion of dosages, 56t–57t
for hypothyroidism, 50t, 77
systemic enzymes, for Hashimoto thyroiditis, 89
T. See moniodothyronine
T2. See diiodothyronine
T3. See triiodothyronine
T3 resin uptake, 8b
T3/T4 combination therapy
for hypothyroidism, 51t–52t, 54
and pregnancy, 174
T3 toxicosis, 100
T4. See thyroxine
TA. See toxic adenoma
TAb. See thyroid antibody
tai chi, 195
Tapazole, for hyperthyroidism, 103, 104b
targeted drug therapies, for thyroid cancer, 142
TBG. See thyroid-binding globulin; thyroxine-binding globulin
technetium, 176
TEE. See total energy expenditure
testosterone, 18t
males with low testosterone, 24
Tg. See thyroglobulin
TgAb. See thyroglobulin antibody
L-theanine, 132
for hypothyroidism, 87
thiamine. See vitamin B1
thioamides, 38
thionamides. See antithyroid drugs (ATDs)
Thyroflex test, 66
Thyrogen, 142, 162
thyroglobulin (Tg), 8b, 143, 148, 176
thyroglobulin antibody (TgAb), 9b, 10t, 49, 73, 94, 99, 148
thyroid, 2
anatomy, 2f
thyroid antibody (TAb), 170
thyroid binding globulin (TBG), 6
thyroid cancer, 19b, 38–39
access to food and food- or nutrition-related supplies, 146b
biochemical/diagnostic testing frequency, 228
in children, 184–186, 185b
diagnosis of, 139, 184–185
medical treatments, and hypothyroidism, 45
monitoring of, 143
in pregnancy, 176
prevalence and incidence of, 136
prevention of, 205–206
prognosis and staging, 140
risk, and physical activity, 21
risk factors of, 137
risk stratification of death from, 140
severity, assessment of, 140
signs and symptoms of, 136
types of, 137–138
Thyroid Cancer Survivor Association, 156
thyroid collar, 206
thyroid disorders, 4
diagnostic criteria, 4–6
and health impact, 4
thyroidectomy, 99, 105, 106, 122, 141, 147–148, 175, 181, 184b, 196
thyroid function tests, 18, 52
thyroid hormones, xxiii, 2, 3, 3f, 197
dysfunction, xxiii
iodine as component to, 36
and iodine intake, 123
laboratory measures of, 6, 7b–9b, 10t, 64, 64t, 113, 113t, 147–148
levels, 7b
thyroiditis, 122
autoimmune thyroiditis, 94
chronic lymphocytic thyroiditis, 94
Hashimoto thyroiditis. See Hashimoto thyroiditis
and hyperthyroidism, 95
and hypothyroidism, 44
postpartum. See postpartum thyroiditis
thyroid lymphoma, 138
thyroid medications. See also medical management of
hyperthyroidism; medical management of
hypothyroidism; medical management of thyroid cancer
dosage, 55t
food interactions with, 19, 53
iodine in, 36
peripheral metabolism, factors that affect, 214
supplement interactions with, 19, 53
and weight management, 19b
thyroid nodules, xxiii, 136
benign, treatment goals, 141
biochemical/diagnostic testing frequency, 227
in children, 184
diagnosis of, 139, 184–185
and hyperthyroidism, 95–96
malignant, treatment goals, 141–142
medical treatments, and hypothyroidism, 45
monitoring of, 142
in pregnancy, 176
prevalence and incidence of, 136
risk factors of, 137
signs and symptoms of, 136
thyroid peroxidase (TPO), 49, 75
thyroid peroxidase antibody (TPOAb), 8b, 10t, 73, 94, 189
thyroid sarcoma, 138
thyroid-stimulating hormone (TSH), 2, 4, 10r, 18–19, 48, 99, 106, 139, 148, 170, 171, 174
for assessing thyroid status, concerns, 5
and diagnostic criteria, 4–5
guidelines, trimester-specific, 172t
and hypothyroidism in pregnancy, 172
levels, challenges to treatment based on, 6b
levels, interpretation and expected hormonal profile, 5t
monitoring, while taking medications, 59
nutrition-related medications that affect, 214
screening, conditions that warrant, 48b
-suppressive therapy, 148
and thyroid medications, 53
thyroid stimulating hormone receptor antibody (TRAb),
9b, 94, 174, 175
thyroid-stimulating hormone-secreting pituitary adenoma
and hyperthyroidism, 96, 100
treatment for, 106
thyroid-stimulating immunoglobulin (TSI), 99
antibodies, 9b, 10t, 94
thyroid storm, 38, 93, 100
medical treatment for, 100
Thyrolar
conversion of dosages, 56t–57t
for hypothyroidism, 51t
Thyro-Tab, for hypothyroidism, 50t
thyrotoxic crisis. See thyroid storm
thyrotoxicosis, 38, 44, 92
drug-induced, treatment for, 107
iatrogenic, 56
presentation, assessment of, 100
transient, 95
thyrotoxicosis factitia, and hyperthyroidism, 96–97
thyrotropin. See thyroid-stimulating hormone (TSH)
thyrotropin-releasing hormone (TRH), 2
thyroxine (T4), 3, 6b, 7b, 36
thyroxine-binding globulin (TBG), 9b, 97
L-thyroxine. See levothyroxine (L-T4)
timing of hypothyroidism medications, 53
Tirosint
conversion of dosages, 56t–57t
for hypothyroidism, 50t, 53, 77
tissue hypothyroidism, 45
TMNG. See toxic multinodular goiter
Tolerable Upper Intake Level (UL), 33t–34t
total energy expenditure (TEE), 30
total thyroidectomy, 15, 105, 143, 147–148
total thyroxine (TT4), 6, 7b, 99, 173, 174, 180
total triiodothyronine (TT3), 6, 8b, 19b, 49, 54, 99, 174
toxic adenoma (TA)
and hyperthyroidism, 93–94, 95–96
treatment for overt hypothyroidism in, 102–106, 108b
toxic multinodular goiter (TMNG)
and hyperthyroidism, 93, 95, 97
treatment for overt hypothyroidism in, 102–106, 108b
toxins
and hyperthyroidism, 96
and hypothyroidism, 45
and weight management, 24–25
TPO. See thyroid peroxidase
INDEX

TPOAb. See thyroid peroxidase antibody

TRAb. See thyroid stimulating hormone receptor antibody

transient thyrotoxicosis, 95

transthyretin (TTR), 97

trazodone, 199

TRH. See thyrotropin-releasing hormone

triiodothyronine (T3), 3, 6b, 7b, 36, 49, 194
 production and function of, 17t
 weight regulation and relationship to thyroid, 17t

Triostat, for hypothyroidism, 51t

Tritostat, for hypothyroidism, 51t

TSH. See thyroid-stimulating hormone

TSI. See thyroid-stimulating immunoglobulin

TT3. See total triiodothyronine

TT4. See total thyroxine

TTR. See transthyretin

turmeric, 79, 191

Turner syndrome, 43

type 1 diabetes, 198, 199

tyrosine, dietary, 74

UBW. See usual body weight

UICC. See Union for International Cancer Control

UL. See Tolerable Upper Intake Level

ultrasound, 66, 100, 115, 136, 139, 176

underactive thyroid. See hypothyroidism

undifferentiated carcinoma, 138

Union for International Cancer Control (UICC), 140

Unithroid, for hypothyroidism, 50t

urinary iodine levels, 177–178, 178t

urinary oxalate test, 77

US Food and Drug Administration (FDA), 25, 52, 54, 66,
 77, 195

US Preventive Services Task Force, 48

usual body weight (UBW), 64, 147

Valerian root extract, 192

vanadium, 25

evandetanib, for thyroid cancer, 142

vegetables, 199

vitamin A, 75, 76, 121, 167

vitamin B1, 124

vitamin B2, 76

vitamin B5, 124

vitamin B6, 76, 124

vitamin B12, 76, 121–122, 124

vitamin B12 deficiency anemia, 65

vitamin C, 121, 124, 201

vitamin D, 25, 75–76, 94, 121, 124, 195, 196
 deficiency, and hyperthyroidism, 124
 deficiency, and hypothyroidism, 45, 75

vitamin E, 76, 125, 167, 191

vitamin K2, 76

vitamins, 33, 35
 for hyperthyroidism, 126b
 for hypothyroidism, 81b

repletion of, 124–125

supplements, 81

for thyroid nodules/cancer, 161b

walking, 79

weight, 190
 and hyperthyroidism, 100, 119b
 and hypothyroid nutrition, 70b
 regain of, 122
 and thyroid nodule/cancer nutrition, 153b

weight regulation, 15
 additional testing, 32
 antioxidant and nutrient deficiencies, 25
 behavioral strategies, 22–23
 diet optimization, 19b–20b
 food sensitivity, 24
 gut microbiota, 25
 hormones involved in, 15–16, 16t–17t
 and insulin resistance, 23
 low growth hormone, 24
 low stomach acid and dysbiosis, 25
 males with low testosterone, 24
 menopause, 24
 physical activity and thyroid, evidence regarding, 21
 physical activity for weight loss and prevention of
 weight regain, 21b
 physical activity optimization, 20b
 polycystic ovary syndrome, 23
 realistic goals, setting, 26
 supplements, 25
 and thyroid medications, 19b
 toxins, 24–25
 weight loss techniques, thyroid-specific, 18–19

whole body iodine scan, 143

Wobenzym, 89
Wolff-Chaikoff effect, 38, 123
WP thyroid, for hypothyroidism, 52b, 77

xerostomia, 122

Yersinia enterocolitica, 45, 97
yoga, 79, 193
 restorative, 20b

zaleplon, 199
zinc, 25, 74, 125, 196
zolpidem, 199