Contents

List of Boxes, Tables, and Figures ... v

Frequently Used Terms and Abbreviations .. x

Contributors ... xv

Reviewers ... xvii

Preface ... xviii

Acknowledgments ... xx

Publisher's Note on Gender-Inclusive Language ... xxi

Chapter 1: Overview of Metabolic and Bariatric Surgery 1

Chapter 2: Evaluation and Nutrition Care of Preoperative Patients 30

Chapter 3: Nutrition Care in the Immediate Postoperative Period 47

Chapter 4: Nutrition Care During Weight Stabilization 87

Chapter 5: Inadequate Weight Loss and Weight Regain After Metabolic and Bariatric Surgery ... 107

Chapter 6: Metabolic and Bariatric Surgery in Adolescents 129

Chapter 7: Special Considerations After Metabolic and Bariatric Surgery 150

Chapter 8: Nutrition Support Therapy After Metabolic and Bariatric Surgery 183
Chapter 9: Endoscopic Bariatric Therapies ... 205

Appendix A: Online Resources ... 219

Appendix B: Postoperative Diet Stages .. 224

Appendix C: Postoperative Metabolic and Bariatric Surgery
Vitamin and Mineral Supplementation .. 228

Appendix D: Biochemical Surveillance After
Metabolic and Bariatric Surgery ... 255

Appendix E: Sample Nutrition Care Tools .. 269

Appendix F: Postoperative Complications and
Symptom Management .. 286

Appendix G: Nutrition Troubleshooting Guide for the
Metabolic and Bariatric Surgery Patient .. 294

Appendix H: Nutrition Counseling and Education 312

Continuing Professional Education ... 320

Index ... 321
List of Boxes, Tables, and Figures

Boxes

Box 1.1 Classification of Body Weight According to Body Mass Index3
Box 1.2 Qualifications for Consideration of Metabolic and Bariatric Surgery ... 4
Box 1.3 Gut Hormones and Their Role in Metabolic and Bariatric Surgery .. 13
Box 1.4 Calculating Excess Body Weight Before Bariatric Surgery and Percentage of Excess Weight Loss and Total Body Weight Loss15
Box 2.1 Components of Preoperative Medical Evaluation ... 31
Box 2.2 Components of Preoperative Surgical Evaluation .. 32
Box 2.3 Components of Preoperative Psychosocial Evaluation ... 33
Box 2.4 Components of Preoperative Nutrition Assessment ... 34
Box 2.5 Preoperative Laboratory Studies .. 35
Box 2.6 Mifflin-St. Jeor Formula for Estimating Resting Metabolic Rate ... 36
Box 2.7 Glycemic Targets Before Metabolic and Bariatric Surgery .. 38
Box 2.8 Preoperative Behavior Modification and Nutrition Goals ... 41
Box 2.9 Nutrition Care Process Case Study for Preoperative Metabolic and Bariatric Surgery Patient .. 42
Box 2.10 Sample Insurance Requirements .. 43
Box 2.11 Questions to Ask When Verifying Benefits ... 44
Box 3.1 Postoperative Enhanced Recovery in Metabolic and Bariatric Surgery Interventions ... 49
Box 3.2 Daily Fluid Goals in the Full Liquid Diet .. 53
Box 3.3 Sample Metabolic and Bariatric Semisolid and Soft Foods 55
Box 3.4 Tips for Patients During the Semisolid and Soft Foods Diet 58
Box 3.5 Adjustable Gastric Banding (AGB) Assessment 65
Box 3.6 Nutrition Assessment for the Immediate Postoperative Metabolic and Bariatric Surgery Patient ... 66
Box 3.7 Selected Nutrition Diagnoses for the Early Postoperative Period (0 to 3 Months After Metabolic and Bariatric Surgery) 71
Box 3.8 Example of Nutrition Diagnosis for Patients 3 to 12 Months After Metabolic and Bariatric Surgery ... 75
Box 3.9 Selected Nutrition Interventions and Monitoring and Evaluation Outcome Indicators for Nutrition Diagnoses in the First 3 Months After Metabolic and Bariatric Surgery 76
Box 3.10 Example of Nutrition Interventions and Monitoring and Evaluation Outcome Indicators for a Nutrition Diagnosis Made More Than 3 Months After Metabolic and Bariatric Surgery 79
Box 3.11 Nutrition Care Process Case Study for the Early Postoperative Period (0 to 3 Months After Metabolic and Bariatric Surgery) 80
Box 3.12 Nutrition Care Process Case Study for 6 Months to 1 Year After Metabolic and Bariatric Surgery ... 81
Box 4.1 Guidelines for Working With Patients During Weight Stabilization ... 89
Box 4.2 Factors Associated With Successful Postoperative Metabolic and Bariatric Surgery Weight Maintenance ... 90
Box 4.3 Factors Contributing to Successful Weight Loss and Maintenance After the Adjustable Gastric Banding Procedure 91
Box 4.4 Potential Signs That Hair Loss Is Due to Nutritional Complications of Metabolic and Bariatric Surgery ... 92
Box 4.5 Essential Elements of Postsurgical Primary Care of the Metabolic and Bariatric Surgery Patient ... 93
List of Boxes, Tables, and Figures

Box 4.6 Improved Comorbidities After Metabolic and Bariatric Surgery ... 94

Box 4.7 Selected Nutrition Diagnoses for Patients More Than 1 Year After Metabolic and Bariatric Surgery .. 99

Box 4.8 PPES for the Nutrition Diagnosis of Inadequate Vitamin Intake (Vitamin B12) ... 100

Box 4.9 Nutrition Interventions and Outcome Indicators for the Nutrition Diagnosis of Inadequate Vitamin Intake (Vitamin B12) ... 101

Box 5.1 Long-Term Weight Loss (More Than 10 Years) by Procedure Expressed in Weighed Mean Percent Excess Weight Loss ... 109

Box 5.2 Potential Risk Factors for Weight Regain After Bariatric Surgery ... 112

Box 5.3 Nutrition and Behavioral Guidelines to Help Patients Maintain Weight Loss After Metabolic and Bariatric Surgery .. 116

Box 5.4 Prescription Weight Loss Medications ... 118

Box 6.1 Patient Selection Criteria for Adolescent Candidates for Metabolic and Bariatric Surgery ... 132

Box 6.2 Preoperative Nutrition Interventions for Adolescent Patients (3 to 6 Months Before Metabolic and Bariatric Surgery) ... 133

Box 6.3 Sample Preoperative Reduced Calorie and Reduced Carbohydrate Diet for Adolescent Metabolic and Bariatric Surgery Patients .. 136

Box 6.4 Role of the Registered Dietitian Nutritionist in Inpatient Care of the Adolescent Metabolic and Bariatric Surgery Patient .. 137

Box 6.5 Suggested Follow-Up Visit Schedule for Adolescent Metabolic and Bariatric Surgery Patients .. 137

Box 6.6 Nutrition Considerations for Adolescents in the Postoperative Phase ... 139

Box 7.1 Possible Etiologies of Postbariatric Hypoglycemia ... 152

Box 7.2 Diet for Managing or Preventing Reactive Hypoglycemia ... 153

Box 7.3 Medications Used to Manage Postbariatric Hypoglycemia ... 154

Box 7.4 Monitoring and Evaluation for Postbariatric Hypoglycemia ... 155
Box 7.5 Factors to Consider in the Nutrition Assessment of Patients With Type 1 Diabetes ... 156

Box 7.6 Selected Nutrition Diagnoses for Patients With Type 1 Diabetes .. 157

Box 7.7 Preoperative and Postoperative Nutrition Interventions for Metabolic and Bariatric Surgery Patients With Type 1 Diabetes 158

Box 7.8 Treatment of Hypoglycemia in Type 1 Diabetes 159

Box 7.9 Strategies to Prevent Hypoglycemia in Patients with Type 1 Diabetes .. 159

Box 7.10 Nutrient Recommendations for Premetabolic and Bariatric Surgery Patients With Chronic Kidney Disease Stages 1 to 4 and Obesity ... 161

Box 7.11 Nutrient Recommendations for Patients With Obesity and End-Stage Renal Disease on Dialysis .. 162

Box 7.12 Nutrient Recommendations for Post-Roux-en-Y Gastric Bypass Patients With End-Stage Renal Disease .. 163

Box 7.13 Nutrient Recommendations for Patients After Roux-en-Y Gastric Bypass and Renal Transplant .. 165

Box 7.14 Institute of Medicine Recommendations for Weight Gain During Pregnancy .. 169

Box 7.15 Selected Nutrition Diagnoses for Pregnant Metabolic and Bariatric Patients .. 172

Box 7.16 Sample Nutrition Prescription for a Pregnant Patient After Metabolic and Bariatric Surgery .. 172

Box 8.1 Indications for Nutrition Support in Metabolic and Bariatric Surgery Patients .. 185

Box 8.2 Advantages and Disadvantages of Enteral and Parenteral Nutrition .. 186

Box 8.3 Nutrition Assessment of Metabolic and Bariatric Surgery Patients Who May Require Nutrition Support .. 187

Box 8.4 Estimating Resting Metabolic Rate in Patients With Obesity 188

Box 8.5 Typical Daily Protein Requirements for Patients Receiving Nutrition Support Therapy ... 190
List of Boxes, Tables, and Figures

Box 8.6 Methods for Estimating Fluid Requirements for Metabolic and Bariatric Surgery Patients on Nutrition Support ... 190
Box 8.7 Selected Nutrition Diagnoses for Metabolic and Bariatric Surgery Patients Requiring Nutrition Support .. 193
Box 8.8 Daily Parenteral Vitamin Requirements .. 194
Box 8.9 Daily Parenteral Trace Element Requirements 196
Box 8.10 Management Strategies for Enteral Nutrition Complications .. 198
Box 8.11 Management Strategies for Parenteral Nutrition Complications .. 200

Tables

Table 1.1 Weight Loss Outcomes of Metabolic and Bariatric Procedures .. 17
Table 1.2 Morbidity Outcomes 1 Year After Metabolic Bariatric Surgery ... 18
Table 1.3 Summary of Randomized Controlled Trials Showing Diabetes Remission Following Metabolic and Bariatric Surgery ... 19
Table 3.1 Weight Loss Rate by Procedure ... 63

Figures

Figure 1.1 Adjustable gastric band (AGB) procedure ... 6
Figure 1.2 Roux-en-Y gastric bypass (RYGB) procedure .. 7
Figure 1.3 Sleeve gastrectomy (SG) procedure .. 8
Figure 1.4 Biliopancreatic diversion with duodenal switch (BPD/DS) procedure .. 9
Figure 1.5 Single-anastomosis duodeno-ileostomy with sleeve (SADI-S) procedure .. 10
Figure 1.6 One-anastomosis gastric bypass (OAGB) procedure 11
Figure 1.7 Suggested postoperative care and follow-up of the metabolic and bariatric surgery patient by the registered dietitian nutritionist 21
Frequently Used Terms and Abbreviations

AACE American Association of Clinical Endocrinologists
AAP American Academy of Pediatrics
ACS American College of Surgeons
AGB adjustable gastric band
ASA American Society of Anesthesiologists
ASMBS American Society for Metabolic and Bariatric Surgery
ASPEN American Society for Parenteral and Enteral Nutrition
BMI body mass index
BMR basal metabolic rate
BOLD Bariatric Outcomes Longitudinal Database
BP biliopancreatic
BPD biliopancreatic diversion
BPD/DS biliopancreatic diversion with duodenal switch
BUN blood urea nitrogen
CBC complete blood count
CBT cognitive behavioral therapy
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CKD</td>
<td>chronic kidney disease</td>
</tr>
<tr>
<td>CSOWWM</td>
<td>Certified Specialist in Obesity and Weight Management</td>
</tr>
<tr>
<td>DEXA</td>
<td>dual-energy x-ray absorptiometry</td>
</tr>
<tr>
<td>DFE</td>
<td>dietary folate equivalent</td>
</tr>
<tr>
<td>DIAAS</td>
<td>Digestible Indispensable Amino Acid Score</td>
</tr>
<tr>
<td>DPG</td>
<td>dietetic practice group</td>
</tr>
<tr>
<td>EAL</td>
<td>Academy of Nutrition and Dietetics Evidence Analysis Library</td>
</tr>
<tr>
<td>EBT</td>
<td>Endoscopic Bariatric Therapies</td>
</tr>
<tr>
<td>EBW</td>
<td>excess body weight</td>
</tr>
<tr>
<td>EN</td>
<td>enteral nutrition</td>
</tr>
<tr>
<td>ESG</td>
<td>endoscopic sleeve gastroplasty</td>
</tr>
<tr>
<td>EWL</td>
<td>excess weight loss</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FFM</td>
<td>fat-free mass</td>
</tr>
<tr>
<td>GDM</td>
<td>gestational diabetes mellitus</td>
</tr>
<tr>
<td>GERD</td>
<td>gastroesophageal reflux disease</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>GLP-1</td>
<td>glucagon-like peptide 1</td>
</tr>
<tr>
<td>H&P</td>
<td>history and physical</td>
</tr>
<tr>
<td>HbA1c</td>
<td>hemoglobin A1c</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>IAA</td>
<td>indispensable amino acids</td>
</tr>
<tr>
<td>IBW</td>
<td>ideal body weight</td>
</tr>
<tr>
<td>IFSO</td>
<td>International Federation for the Surgery of Obesity</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>IGB</td>
<td>intragastric balloons</td>
</tr>
<tr>
<td>iPTh</td>
<td>intact parathyroid hormone</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>LOC</td>
<td>loss of control</td>
</tr>
<tr>
<td>LOS</td>
<td>length of stay</td>
</tr>
<tr>
<td>MBS</td>
<td>metabolic and bariatric surgery</td>
</tr>
<tr>
<td>MBSAQIP</td>
<td>Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program</td>
</tr>
<tr>
<td>MGB</td>
<td>mini-gastric bypass</td>
</tr>
<tr>
<td>MI</td>
<td>motivational interviewing</td>
</tr>
<tr>
<td>MMA</td>
<td>methylmalonic acid</td>
</tr>
<tr>
<td>MNT</td>
<td>medical nutrition therapy</td>
</tr>
<tr>
<td>NASH</td>
<td>nonalcoholic steatohepatitis</td>
</tr>
<tr>
<td>NCP</td>
<td>Nutrition Care Process</td>
</tr>
<tr>
<td>NHLBI</td>
<td>National Heart, Lung, and Blood Institute</td>
</tr>
<tr>
<td>NIDDKD</td>
<td>National Institute of Diabetes and Digestive and Kidney Diseases</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>NSV</td>
<td>nonscale victory</td>
</tr>
<tr>
<td>OAC</td>
<td>Obesity Action Coalition</td>
</tr>
<tr>
<td>OAGB</td>
<td>one-anastomosis gastric bypass</td>
</tr>
<tr>
<td>ODS</td>
<td>Office of Dietary Supplements</td>
</tr>
<tr>
<td>OHS</td>
<td>obesity hypoventilation syndrome</td>
</tr>
<tr>
<td>OMA</td>
<td>Obesity Medicine Association</td>
</tr>
<tr>
<td>OTC</td>
<td>over-the-counter</td>
</tr>
<tr>
<td>PBH</td>
<td>postbariatric hypoglycemia</td>
</tr>
</tbody>
</table>
PCP primary care provider
PDCAAS protein digestibility-corrected amino acid score
%EBMIL percent excess body mass index loss
%EWL percentage of excess weight loss
%TBWL percentage of total body weight loss
%TWL percentage of total weight loss
PES problem, etiology, and symptoms
PN parenteral nutrition
POD postoperative day
POSE Primary obesity surgery endoluminal
PPI proton pump inhibitor
PSU Penn State University
PYY peptide YY
RAE retinol activity equivalent
RCT randomized controlled trial
RDN registered dietitian nutritionist
RMR resting metabolic rate
RYGB Roux-en-Y gastric bypass
SADI-S single-anastomosis duodeno-ileostomy with sleeve
SG sleeve gastrectomy
SGA small for gestational age
SIBO small intestinal bacteria overgrowth
T2DM type 2 diabetes mellitus
TBWL total body weight loss
TIBC total iron-binding capacity
TOS The Obesity Society
Frequently Used Terms and Abbreviations

TTM transtheoretical model
TWL total weight loss
UGI upper gastrointestinal series
UL tolerable upper limit
WM weight management
WNL within normal limits
Contributors

Editors
Kellene A. Isom, PhD, MS, RD, CAGS
Assistant Professor, Nutrition, California State Polytechnic University, Pomona
Pomona, CA

Melissa C. Majumdar, MS, RD, CSOWM, LDN
Bariatric Coordinator, Emory University Hospital Midtown Atlanta, GA

Authors
Laura Andromalos, MS, RD, CSOWM, CDCES
Clinical Nutrition Manager, University of Minnesota Medical Center—Sodexo
Minneapolis, MN

Katie Chapmon, MS, RD
Private Practice Dietitian and Speaker
Los Angeles, CA

Lillian Craggs-Dino, DHA, RDN, LDN
Bariatric Dietitian and Support Group Coordinator,
Cleveland Clinic Florida
Weston, FL

Mary Gray Hixson, MPH, RD, CSOWM, LDN
Kellene A. Isom, PhD, MS, RD, CAGS
Assistant Professor, Nutrition, California State Polytechnic University, Pomona
Pomona, CA

Abigail Holewinski, MS, RD
Clinical Research Manager, GID Bio, Inc
Louisville, CO

Heather K. Mackie, MS, RD, LD
Clinical Director, ReShape Lifesciences, Inc
Montgomery, TX

Melissa C. Majumdar, MS, RD, CSOWM, LDN
Bariatric Coordinator, Emory University Hospital Midtown
Atlanta, GA

Kris M. Mogensen, MS, RD-AP, LDN, CNSC
Team Leader Dietitian Specialist, Department of Nutrition,
Brigham and Women’s Hospital
Boston, MA

Frances Parpos, RD, LDN, CDCES
Senior Nutritionist, Cardiac Rehabilitation, Brigham and
Women’s Hospital
Foxborough, MA

Susan Sewell, MS, RD, CSOWM, LD
Registered Dietitian, Diabetes Educator,
Cincinnati Children’s Hospital
Cincinnati, OH

Cassie I. Story, RDN
Private Practice Dietitian, WLS Daily, Director of Nutrition Education, Bariatric Advantage
Scottsdale, AZ

Colleen Tewksbury, PhD, MPH, RD, CSOWM, LDN
Senior Research Investigator, Perelman School of Medicine, University of Pennsylvania
Philadelphia, PA
Reviewers

Laura Andromalos, MS, RD, CSOWM, CDCES
Clinical Nutrition Manager, University of Minnesota Medical Center—Sodexo
Minneapolis, MN

Svetlana Chentsova, FNP-BC, RN-BC, CBN
Nurse Practitioner Team Manager, Brigham and Women’s Hospital
Boston, MA

Nina Crowley, PhD, RDN, LD
Metabolic & Bariatric Surgery Program Coordinator, Medical University of South Carolina
Charleston, SC

Liz Goldenberg, MPH, RD, CDN
Bariatric Surgery Program Coordinator, Weill Cornell Medicine, New York Presbyterian Hospital
New York, NY

Molly Jones Mills, RDN, LD
Outpatient Bariatric Surgery Dietitian and Adolescent Program Coordinator, Sodexo/The Medical University of South Carolina
Charleston, SC

Kristen Smith, MS, RDN, LD
Bariatric Surgery Program Coordinator, Piedmont Atlanta Hospital
Atlanta, GA
Preface

In the 6 short years since the second edition of the *Academy of Nutrition and Dietetics Pocket Guide to Bariatric Surgery* was published, the metabolic and bariatric surgery (MBS) literature has exploded. The sleeve gastrectomy has officially become the most performed surgery, and the popularity of endoscopic procedures has increased. The third edition of the *Academy of Nutrition and Dietetics Pocket Guide to Bariatric Surgery* is meant to serve as a snapshot into the most up-to-date literature to support the registered dietitian nutritionist (RDN) and the interdisciplinary team to care for the MBS patient with evidence-based practices. The RDN new to MBS practice may use the pocket guide to gather background on the medical and nutrition components of MBS surgery, or the RDN who has devoted their career to the care of the MBS patient may refer to this book to validate the care of the complex patient with kidney disease, pregnancy, or nutritional deficiencies.

The third edition includes updates to reflect the gains in the literature and shifts in the field:

- Descriptions of single anastomosis procedures have been added to Chapter 1.
- More long-term data on the outcomes of MBS have been added.
- The biliopancreatic diversion with duodenal switch is included throughout the pocket guide.
- More liberal diet progression options are reviewed in Chapter 3 and Appendix B.
- Nutrition-related enhanced recovery interventions are discussed in Chapters 2 and 3.
• A more thorough review of MBS in adolescents is included in Chapter 6, as practitioners and researchers now have more studies in the adolescent population.

• A full chapter (Chapter 9) is devoted to endoscopic weight loss therapies: balloons, aspiration therapies, and revisional procedures performed endoscopically.

• Appendixes C and D, which deal with vitamin and mineral supplementation and biochemical surveillance, have been reformatted. They now include easy-to-interpret tables with valuable updates for the treatment of nutritional deficiencies in the MBS patient.

• A new appendix on nutrition counseling and education (Appendix H) has been added to relate evidence-based counseling methods and theories of change to the MBS population.
Acknowledgments

We would like to thank the authors and reviewers for their perseverance during a global pandemic and devotion to evidence-based practice. We appreciate the thorough and careful feedback of our peer reviewers. It is with the teamwork and attention to detail of this esteemed group that we can produce this valuable resource.

We would like to acknowledge Sue Cummings, MS, RD, LDN, for providing the foundation for this work in the first and second editions of the text. We would also like to thank Mary Litchford, PhD, RDN, LDN, for her intellect on protein quality (Chapter 3) and Edo Aarts, MD, PhD, for his surgical drawings (Chapter 1). We also appreciate the support and patience of our family and friends, as we have edited during late nights and weekend mornings.
Publisher’s Note on Gender-Inclusive Language

The Academy of Nutrition and Dietetics encourages diversity and inclusion by striving to recognize, respect, and include differences in ability, age, creed, culture, ethnicity, gender, gender identity, political affiliation, race, religion, sexual orientation, size, and socioeconomic characteristics in the nutrition and dietetics profession.1

As part of our commitment to diversity and inclusion, all new and updated editions of professional books and practitioner resources published by the Academy of Nutrition and Dietetics will transition to the use of inclusive language. As appropriate, gender-neutral language, such as person/persons, individual/individuals, or patient/patients, is used to respect and recognize the spectrum of gender identities, including transgender and nonbinary identities. Where gender or sex is referred to in this book, it is important to note that data on sex assigned at birth or gender identity were not further specified for study participants, and specific recommendations or data for transgender and gender-diverse people were not provided.

Existing guidelines for nutrition assessment and interventions rely primarily on gender-specific values and recommendations. As research continues to explore the unique health and nutrition needs of transgender and gender-diverse people, nutrition and health practitioners can expand their knowledge and understanding by reviewing available resources that provide general guidance for person-centered nutrition.
care of gender-diverse individuals. The use of inclusive language is consistent with the American Medical Association’s *AMA Manual of Style* as well as other health professional groups and government organizations. The Academy of Nutrition and Dietetics will continue to evolve to adopt consensus best practices related to nutrition care of gender-diverse individuals that maximize inclusivity and improve equitable and evidence-based care.

CHAPTER 1

Overview of Metabolic and Bariatric Surgery

Introduction

From 2017 to 2018, 42.4% and 9.2% of US adults met the criteria for obesity and severe obesity, respectively. The trends are unfortunately similar for children and adolescents in the United States. From 2015 to 2016, 18.5% of US adults met the criteria for obesity. The prevalence of both obesity and clinically severe obesity was highest in non-Hispanic Black adults compared to other races and Hispanic-origin groups. Adults aged 40 to 59 years were more likely to suffer from clinically severe obesity compared with other age groups.1,2

The increase in clinically severe obesity among adults in the United States continues to fuel the demand for metabolic and bariatric surgery (MBS). Approximately 252,000 MBS procedures were performed in the United States in 2018.3

MBS continues to be more effective than conventional management for weight loss in patients suffering from clinically severe obesity.4 This class of procedures is the most effective way to achieve significant, durable weight loss and can lead to amelioration or resolution of most obesity-related comorbidities in adults and adolescents.5-8 In adolescents
affected by clinically severe obesity, MBS may lead to improvements in health and psychosocial well-being that exceed those that would be expected if the operation was delayed until later in life.9,10

Overweight and Obesity

Obesity is defined using body mass index (BMI) criteria, calculated as weight (kg)/height (m)2, as shown in Box 1.1.11,12 This criteria includes the latest guideline suggesting lowering BMI criterion for those of Asian ethnicity due to the risk correlation of type 2 diabetes; however, US insurance companies are not lowering their criterion at this time for this population.13 The BMI criteria for obesity are subdivided into classes I through III, with class I regarded as low-risk obesity, class II deemed moderate-risk obesity, and class III associated with the highest obesity-related health risks. Class III is often referred to as clinically severe obesity. The prevalence of individuals affected by clinically severe obesity has been increasing at faster rates than in lower BMI classes since 1990.14

The utility of using BMI is often debated, and it is critical for clinicians to have a general understanding of the most commonly used techniques for the assessment of adiposity (eg, waist circumference, waist-to-hip ratio, body composition analysis, skinfold thickness, underwater weighing, and dual-energy x-ray absorptiometry).15 Health care providers should also be able to understand how to interpret these measurements, and there are limitations for each type of analysis, especially when applied to varied populations. Various analysis techniques will provide differing insight into not only percentage body fat but also fat distribution, muscle mass, and bone mass.16

Criteria for Metabolic and Bariatric Surgery

In 1991, the National Institutes of Health (NIH) Consensus Development Conference Panel developed the criteria for MBS.17 Although new
surgical techniques and procedures have been developed since then, the current criteria for MBS deviate little from these recommendations. Box 1.2 on page 4 lists the criteria originally recommended by the NIH and some additional requirements by many insurers.17,18 See Chapter 6 for criteria and preoperative and postoperative care of adolescent MBS patients.
Inclusion criteria

Body mass index (BMI) 40 or greater, or more than 100 lb overweight.

BMI 35 or greater with comorbid conditions\(^a\) (at least one, such as type 2 diabetes, hypertension, sleep apnea and other respiratory disorders, nonalcoholic fatty liver disease, osteoarthritis, lipid abnormalities, gastrointestinal disorders, or heart disease).

Of note, laparoscopic adjustable gastric band (AGB) is a US Food and Drug Administration–approved option for those patients with a BMI 30 or greater with one comorbid condition.

Inability to achieve and sustain a healthy weight loss for a period of time with prior weight loss efforts.

Also recommended

The National Institutes of Health as well as the American College of Surgeons and the American Society for Metabolic and Bariatric Surgery also recommend that surgery be performed:

- by a board-certified surgeon with specialized training or experience in bariatric and metabolic surgery or
- at a center that has a multidisciplinary team of experts for follow-up care (this may include a nutritionist, exercise physiologist or specialist, and a mental health professional).

Some insurance companies require that the surgery be performed at a facility that is accredited by the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP).

\(^{a}\) Clinical Practice Guidelines (2019) state that patients with a BMI of 30 to 34.9 and type 2 diabetes mellitus with inadequate glycemic control despite optimizing lifestyle and medical therapy should be considered for a bariatric procedure. Current evidence is insufficient to support recommending a metabolic and bariatric procedure in the absence of obesity. See reference 13.
Types of Bariatric Surgery

Metabolic and bariatric procedures are grouped according to their mechanisms of action and were previously referred to as either restrictive or malabsorptive procedures, with some procedures characterized by both mechanisms of action.17,24 However, to truly understand the mechanisms of MBS, these complex metabolic changes should be considered25:

- **Nonmetabolic operations provide significant weight loss without altering the physiology of energy (fat) storage.** One example includes the adjustable gastric band (AGB) procedure (see Figure 1.1 on page 6).

- **Metabolic procedures that include gastric manipulation have a profound effect on the secretion of gut hormones that lead to decreased hunger and increased satiety.** These procedures include the Roux-en-Y gastric bypass (RYGB) (see Figure 1.2 on page 7) and the sleeve gastrectomy (SG) (see Figure 1.3 on page 8). Research on the impact of metabolic and gastric manipulation procedures on changes to gut-brain communication is ongoing. Changes in gastric manipulation may decrease hydrochloric acid production in the stomach, which may hinder nutrient absorption.26-28

- **Metabolic procedures cause severe malabsorption of nutrients.** These procedures result in significant intestinal malabsorption of protein, calories, and micronutrients, as well as changes in the secretion of gut hormones that lead to decreased hunger and increased satiety. These surgical procedures include the biliopancreatic diversion (BPD) (not illustrated) and the BPD with duodenal switch (BPD/DS) (see Figure 1.4 on page 9). A newer subcategory within the metabolic procedures category includes one anastomosis procedures. The American Society for Metabolic and Bariatric Surgery (ASMBS) recently endorsed the single-anastomosis duodeno-ileostomy with sleeve (SADI-S) (see Figure 1.5 on page 10), and this procedure will likely be aligned closer to the RYGB than the BPD/DS regarding micronutrient malabsorption, but more research is necessary.29 The one-anastomosis gastric bypass (OAGB) (see Figure 1.6 on page 11) is not endorsed by the
An adjustable band is placed around the top of the stomach, reducing the capacity of the stomach, thereby reducing food intake. The band is tethered to tubing attached to a port that is placed just under the skin. The port provides access for saline to be injected in small amounts over time to allow for adequate restriction of food intake by filling the balloon inside the band. Adjustments are completed as necessary to adjust the volume of food intake, ensure food tolerance, and help patients feel full sooner and stay full longer.

Illustrations reprinted with permission by Dr. Edo Aarts, MD, PhD.
FIGURE 1.2 Roux-en-Y gastric bypass (RYGB) procedure

In the laparoscopic procedure, the stomach is divided into two parts, thereby creating a small pouch (the proximal pouch of the stomach) and a larger excluded pouch (remnant portion of the stomach). Part of the small intestine is bypassed creating the intestinal “short” Roux limb. The bypassed intestine is attached to the proximal pouch.

Illustrations reprinted with permission by Dr. Edo Aarts, MD, PhD.
FIGURE 1.3 Sleeve gastrectomy (SG) procedure

In this procedure, about 75% to 80% of the stomach (the fundus) is removed, leaving what resembles a "sleeve" or a narrow tube. The pyloric sphincter and intestines remain intact, so the food pathway is not altered. Illustrations reprinted with permission by Dr. Edo Aarts, MD, PhD.
FIGURE 1.4 Biliopancreatic diversion with duodenal switch (BPD/DS) procedure

Roughly 75% to 80% of the stomach is permanently removed, similar to a sleeve gastrectomy. The pylorus, which is the valve at the outlet of the stomach, remains intact. The stomach is then connected to the last 250 cm (~8 feet) of small intestine. The remainder of the small intestine is connected 75 to 150 cm from the end of the small bowel, forming the common channel, where food mixes with the digestive enzymes. Illustrations reprinted with permission by Dr. Edo Aarts, MD, PhD.
Roughly 75% to 80% of the stomach is permanently removed, similar to a sleeve gastrectomy. The pylorus, which is the valve at the outlet of the stomach, remains intact. Unlike the biliopancreatic diversion with duodenal switch, the SADI-S completely bypasses the jejunum and leaves very little duodenum and some of the ileum. The remainder of the small intestine is connected 250 to 300 cm from the end of the small bowel, forming the common channel, where food mixes with the digestive enzymes.

Illustrations reprinted with permission by Dr. Edo Aarts, MD, PhD.
FIGURE 1.6 One-anastomosis gastric bypass (OAGB) procedure

A long tubular pouch is made on the lesser curvature of the stomach. The pouch is then connected to a loop of the jejunum portion of the small intestine at roughly 150 to 250 cm from the ligament of Treitz.

Illustrations reprinted with permission by Dr. Edo Aarts, MD, PhD.
by the ASMBS; however, it is growing in popularity worldwide with a very small number being performed in the United States. In addition, patients are traveling to other countries to get this procedure, more commonly referred to as mini-gastric bypass (MGB); however, the OAGB is a modification of the original version of an MGB. Therefore, a brief overview of these procedures should be provided if care is needed for these patients.

Procedure variation of recommendations for necessary vitamin and mineral supplementation is expected due to the metabolic changes and gastric manipulation by surgery type. Some patients may require additional supplementation due to their procedure having an increased need for certain nutrients due to higher rates of malabsorption or the inability to absorb certain nutrients as compared with other procedures. Food intolerance may also play a role when it comes to individual patient variation regarding necessary supplementation. Most importantly, it is critical to evaluate each patient by reviewing their medical history, medication usage (to evaluate for potential drug-nutrient interactions), food intake, MBS history, biochemical analysis, and any signs or symptoms of potential deficiencies. See Appendix C for information regarding vitamin and mineral requirements. Appendix D includes recommended biochemical surveillance to assist with evaluating and treating potential nutrient deficiencies. For further information regarding tips on educating and counseling patients that may assist with enhancing supplement adherence, see Appendix H.

Each procedure has variable, but often profound, effects on weight and comorbidity. Investigation of the changes that occur due to the manipulation of the stomach or digestive tract due to MBS has been ongoing over the past couple of decades. The mechanisms of action and metabolic changes associated with the various types of MBS are not completely understood. Recent data suggest that the RYGB, in addition to affecting neural and hormonal pathways, also affects gut microbiota. Box 1.3 describes the characteristics of the gut hormones that have been the most studied.
BOX 1.3 Gut Hormones and Their Role in Metabolic and Bariatric Surgery

Glucagon-like peptide-1

Mechanism
- Acts synergistically with peptide YY: induces satiety and inhibits food intake
- Augments the insulin response to nutrients
- Slows gastric emptying
- Inhibits glucagon secretion

Postoperative effect
- Sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB), biliopancreatic diversion with duodenal switch (BPD/DS), and single-anastomosis duodeno-ileostomy with sleeve (SADI-S): increased
- Adjustable gastric band (AGB): no effect or increased (conflicting data)

Peptide YY

Mechanism
- Inhibitory effect on gastrointestinal motility
- Shown to induce satiety and reduce food intake

Postoperative effect
- SG, RYGB, and BPD/DS: increased
- AGB: no effect
- SADI-S: unknown

Ghrelin

Mechanism
- Produced from the fundus of the stomach and the proximal intestine
- Only known orexigenic (“hunger”) hormone in the gut
- Primary source is the gastric mucosa

Nutrient exposure to the small intestine is sufficient for food-induced ghrelin suppression in human beings; therefore, gastric nutrient exposure is not necessary for suppression.
Weight Loss Outcomes of Surgery

Since obesity is a complicated condition of weight regulation and the causes of obesity vary, obesity therapy outcomes, including surgery outcomes, also vary. In addition, weight loss outcomes are reported in multiple ways, including:

- excess weight loss (EWL) (eg, in pounds or kilograms),
- the percentage of excess weight loss (%EWL),
- total body weight loss (TBWL), and
- the percentage of total body weight loss (%TBWL).

Registered dietitian nutritionists (RDNs) must be aware of how %EWL is calculated and be able to distinguish among these four terms in the literature. Box 1.4 explains how to determine a patient’s excess body weight (EBW) prior to MBS, the %EWL after surgery, TBWL, and %TBWL. Table 1.1 on page 17 shows weight loss by procedure as %EWL and %TBWL at 2, 10, and 20 years postoperatively.5,7,39

Morbidity and Mortality Outcomes of Surgery

Surgical operations for weight loss are often considered both metabolic and bariatric (or bariatric in the case of the AGB) surgeries because, as
Excess body weight (EBW)
To determine a patient's EBW prior to metabolic and bariatric surgery:

1. Calculate what a patient's weight would be if body mass index (BMI) were 25.

$$25 \times \frac{\text{height in inches}^2}{703} = \text{weight in lb to be at BMI of 25}$$

Online BMI calculators may be helpful in this determination

2. Subtract that weight from the patient's actual weight before metabolic and bariatric surgery.

Example: Patient's preoperative weight is 320 lb and their height is 5'7" (67"")

$$\text{BMI of 25} = 25 \times \frac{67^2}{703} = 159.6 \text{ lb}$$

$$\text{EBW} = 320 \text{ lb} - 159.6 \text{ lb} = 160.4 \text{ lb}$$

Percentage of excess weight loss (%EWL)
To determine %EWL after metabolic and bariatric surgery:

1. Measure the amount of weight lost after surgery.
2. Divide that amount by the amount of preoperative excess body weight.
3. Multiply by 100.

Example using the previously referenced patient that now weighs 200 lb postoperatively:

$$320 \text{ lb} - 200 \text{ lb} = 120 \text{ lb}$$

$$\frac{120 \text{ lb}}{160.4 \text{ lb}} \times 100 = 74.8\% \text{ EWL}$$

Continued on next page
noted, they not only lead to significant weight loss but also influence metabolic processes and, in turn, morbidity and mortality outcomes. There is now a large body of scientific evidence demonstrating remission of type 2 diabetes mellitus (T2DM) following MBS. A large review of 621 studies that included more than 135,247 patients found that MBS results in improvement of T2DM in more than 85% of patients with diabetes and remission of the disease in 78% of patients. Remission was highest for BPD/DS patients at 95%, followed by RYGB patients with remission in 80%, and AGB patients reporting a remission rate of 60%. Other studies found comparable rates between SG and RYGB (ie, 80% remission). SADI-S has been reported to have a resolution rate of 74.1% for T2DM. Other morbidity outcomes for the four most common procedures combined (AGB, SG, RYGB, and BPD/DS) plus SADI-S are described in Table 1.2 (see page 18). The differences between procedures were marginal regarding improvement or resolution of comorbid conditions. The mortality rate for MBS is less than 0.3% (3 out of 1,000) and is similar to that of gall-bladder removal and considerably less than that of a hip replacement. In fact, Medicare has approved metabolic and bariatric surgical procedures

<table>
<thead>
<tr>
<th>BOX 1.4 Calculating Excess Body Weight Before Bariatric Surgery and Percentage of Excess Weight Loss and Total Body Weight Loss (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of total body weight loss (%TBWL)</td>
</tr>
<tr>
<td>To determine a patient’s %TBWL after metabolic and bariatric surgery:</td>
</tr>
<tr>
<td>1. Subtract the patient’s current weight from their preoperative weight.</td>
</tr>
<tr>
<td>2. Divide that by their preoperative weight.</td>
</tr>
<tr>
<td>3. Multiply by 100.</td>
</tr>
<tr>
<td>Example using the same patient mentioned earlier (320 lb preoperatively; currently 200 lb):</td>
</tr>
</tbody>
</table>

\[
\frac{320 \text{ lb} - 200 \text{ lb}}{320 \text{ lb}} \times 100 = 37.5\% \text{TBWL}
\]
TABLE 1.1 Weight Loss Outcomes of Metabolic and Bariatric Procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>2 years postoperative</th>
<th>10 years postoperative</th>
<th>20 years postoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%EWL (^a)</td>
<td>%TBWL (^b)</td>
<td>%EWL</td>
</tr>
<tr>
<td>AGB(^c)</td>
<td>52.6%</td>
<td>20.4%</td>
<td>45.9%</td>
</tr>
<tr>
<td>SG(^d)</td>
<td>58%</td>
<td>25%</td>
<td>58.3%</td>
</tr>
<tr>
<td>RYGB(^f)</td>
<td>68%</td>
<td>35%</td>
<td>56.7%</td>
</tr>
<tr>
<td>BPD/DS(^g)</td>
<td>65.1%</td>
<td>ND</td>
<td>74.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedure</th>
<th>1 year postoperative</th>
<th>2 years postoperative</th>
<th>5 years postoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%EWL</td>
<td>%TBWL</td>
<td>%EWL</td>
</tr>
<tr>
<td>SADI-S(^f)</td>
<td>72%</td>
<td>38.6%</td>
<td>ND</td>
</tr>
</tbody>
</table>

\(^a\) % EWL = percentage of excess weight loss
\(^b\) % TBWL = percentage of total body weight loss
\(^c\) AGB = adjustable gastric band
\(^d\) SG = sleeve gastrectomy
\(^e\) ND = no data
\(^f\) RYGB = Roux-en-Y gastric bypass
\(^g\) BPD/DS = biliopancreatic diversion with duodenal switch
\(^h\) SADI-S = single-anastomosis duodeno-ileostomy with sleeve
based on data that showed a 7-year increase in life expectancy for individuals undergoing metabolic and bariatric surgery.47

There are more than 15 randomized controlled trials (RCTs), which are the highest standards for research protocols, discussing comorbidity outcomes of T2DM remission after bariatric surgery. Reports of T2DM remission among postoperative MBS patients have varied. Table 1.3 summarizes five RCTs showing diabetes remission following MBS.48

Procedure Choice

In the United States, experts estimate that more than 250,000 patients had surgery in 2018; SG was ranked as the most performed procedure. SG has been the most popular MBS option for more than 5 years.3 RYGB and revision are nearly tied for second place at somewhere between 15\% and 20\%, with all other procedures ranging from less than 1\% to 2\%.3 The most common procedures will be focused on more closely in this pocket guide, with brief overviews of the other procedures.

TABLE 1.2 Morbidity Outcomes 1 Year After Metabolic Bariatric Surgery44-46

<table>
<thead>
<tr>
<th>Comorbidity</th>
<th>Four main procedures combined (AGB,a SG,b RYGB,c and BPD/DSd)</th>
<th>SADI-Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>53.2%-68%</td>
<td>96.3%</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>69.8%-71%</td>
<td>68.3%</td>
</tr>
<tr>
<td>Obstructive sleep apnea</td>
<td>66.6%</td>
<td>63.3%</td>
</tr>
<tr>
<td>Gastroesophageal reflux</td>
<td>74.4%</td>
<td>87.5%</td>
</tr>
</tbody>
</table>

a AGB = adjustable gastric band
b SG = sleeve gastrectomy
c RYGB = Roux-en-Y gastric bypass
d BPD/DS = biliopancreatic diversion with duodenal switch
e SADI-S = single-anastomosis duodeno-ileostomy with sleeve
TABLE 1.3 Summary of Randomized Controlled Trials Showing Diabetes Remission Following Metabolic and Bariatric Surgery\(^{20,48-53}\)

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Country</th>
<th>Sample size (n)</th>
<th>Follow-up (months)</th>
<th>Surgery type</th>
<th>Bariatric Type 2 diabetes mellitus remission rate</th>
<th>Conventional Type 2 diabetes mellitus remission rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’Brien et al, 2006(^49)</td>
<td>Australia</td>
<td>80</td>
<td>24</td>
<td>Adjustable gastric band</td>
<td>93%</td>
<td>46.7%</td>
</tr>
<tr>
<td>Dixon et al, 2008(^20)</td>
<td>Australia</td>
<td>60</td>
<td>24</td>
<td>Adjustable gastric band</td>
<td>73%</td>
<td>13%</td>
</tr>
<tr>
<td>Mingrone et al, 2012(^50)</td>
<td>Italy</td>
<td>60</td>
<td>24</td>
<td>Roux-en-Y gastric bypass & biliopancreatic diversion with duodenal switch</td>
<td>85%</td>
<td>0%</td>
</tr>
<tr>
<td>Schauer et al, 2012(^51)</td>
<td>United States</td>
<td>150</td>
<td>12</td>
<td>Roux-en-Y gastric bypass & sleeve gastrectomy</td>
<td>39.4%</td>
<td>12%</td>
</tr>
<tr>
<td>Schauer et al, 2017(^52)</td>
<td>United States</td>
<td>a</td>
<td>a</td>
<td>Roux-en-Y gastric bypass & sleeve gastrectomy</td>
<td>50%(^a)</td>
<td>21%</td>
</tr>
<tr>
<td>Ikramuddin et al, 2013(^53)</td>
<td>United States</td>
<td>120</td>
<td>12</td>
<td>Roux-en-Y gastric bypass</td>
<td>49%</td>
<td>19%</td>
</tr>
</tbody>
</table>

\(^a\) Please review article for more clear data points as Roux-en-Y gastric bypass and sleeve gastrectomy were evaluated separately in this study but combined for clearer presentation purposes.
The MBS options offered to today’s patient vary in their rate of postoperative weight loss, remission, or improvement of obesity-related comorbid conditions, nutritional requirements, and nature and severity of complications. There is no perfect procedure, and it is critical that an informed risk and benefit assessment should be made by each patient. The choice of having MBS and then choosing which procedure ultimately depends on factors related to individual risk/benefit analysis. For further information regarding determining the risk/benefit analysis, visit the American College of Surgeons website to utilize their bariatric surgical risk/benefit calculator.

The Role of the Registered Dietitian Nutritionist

The RDN is responsible for the nutrition care of the MBS patient and plays an important role in every aspect of care, from preoperative assessment and education of the patient to long-term follow-up, evaluation, and monitoring. There are few standardized recommendations for postoperative RDN visits, and nutrition protocols vary greatly among surgical centers. Therefore, RDNs working in a metabolic and bariatric practice should set up standard postoperative nutrition protocols appropriate for that practice (see Figure 1.7 for suggestions; only the four most common procedures were included in this data set).

All patients should have access to a bariatric-trained RDN. The visits described later are merely for suggestion to assist with standardizing medical nutrition therapy (MNT) visits across surgical centers. Long-term RDN-provided MNT is helpful to assist with returning hunger, weight regain, and mitigating the risk of nutritional deficiencies. Patients may benefit from any combination of one-on-one visits with the RDN, group visits (or classes), or support groups provided by the surgical center. All three types of visits may be in-person or may be provided through telemedicine to increase patient efficacy and potentially enhance patient outcomes.
Overview of Metabolic and Bariatric Surgery

Early Postoperative Care

1. Protocol-derived staged meal progression
2. Healthy eating education
3. Education regarding proper supplementation and nutrient deficiency prevention program
4. Hydration education

Follow-Up Care

1. First Visit Postoperatively (X Month Postoperatively)
2. Visit Intervals Until Stable (Every X Months)
3. Visits Once Stable (Months)
4. Monitor adherence with physical activity recommendations in collaboration with the multidisciplinary team
5. In collaboration with the multidisciplinary team, encourage support group attendance; educate patient on available offerings if needed
6. Provide ongoing nutrition education
7. Provide ongoing education regarding proper micronutrient supplementation and nutrient deficiency prevention

<table>
<thead>
<tr>
<th>AGB</th>
<th>SG</th>
<th>RYGB</th>
<th>BPD/DS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1.7 Suggested postoperative care and follow-up of the metabolic and bariatric surgery patient by the registered dietitian nutritionist

Abbreviations: AGB, adjustable gastric band; SG, sleeve gastrectomy; RYGB, Roux-en-Y gastric bypass; BPD/DS, biliopancreatic diversion with duodenal switch; RDN, registered dietitian nutritionist.

Multidisciplinary team may include RDNs, bariatric surgeons, primary care physician, bariatricians, nurse practitioners, physician assistants, behavioral health experts, exercise physiology experts, registered nurses, medical assistants, and so on. See Appendix E for more information.

Support Groups

Support groups are a critical tool in the care of MBS patients, as they have been shown to improve patient outcomes. Support groups can be held for preoperative patients, postoperative patients, or combined for preoperative and postoperative patients. Different modalities can be utilized, such as in-person, virtual, phone conference, or peer-run support groups. The ASMBS Integrated Health Support Group Manual is a valuable resource for support group implementation. No matter the approach, support groups provide an opportunity for RDNs to provide patients with information and deal with unexpected challenges.

Patient-Centered Care

It is the intent of the bariatric RDN to provide patient-centered care to MBS patients. The patient and the RDN work in partnership to meet the patient’s health goals. It is the right of every patient to receive respectful, responsive care, and the RDN must take into account individual patient preferences, needs, and values when guiding clinical decisions. Thus, it is of utmost importance for the RDN to utilize the evidence-based practice in this text within the context of the individual patients they are serving. In addition, the RDN is guided by the Academy of Nutrition and Dietetics Code of Ethics for the Nutrition and Dietetics Profession. This includes adherence to “the core values of customer focus, integrity, innovation, social responsibility, and diversity,” as well as using “science-based decisions.”

Patient-Centered Language

In addition to patient-centered care and following the direction of the Academy of Nutrition and Dietetics Code of Ethics, it is critical that patient-centered language is used when working with patients with obesity and other diseases. Similar references to other individuals avoid defining the patient by their ability or their disease (eg, “disabled person” and “diabetic patient”). The proper terms, “individual with a disability” and “patient with diabetes,” should be used; this is commonly referred to as person-first, patient-first, or person-centered language. The RDN
and other health care professionals should use person-first language and words that respect and acknowledge an individual as a whole person and avoid the use of describing a patient by their disease. For example, avoid using the term, “obese person,” and replace it with “person with obesity.” Putting the patient first and the disease second helps eliminate stereotypes.

It is important to note that some clinicians perceive the word “obesity” to have a negative connotation. However, obesity is a medical term, disease diagnosis, and nutrition diagnosis. Therefore, it is a medically appropriate word; however, it is important to be respectful of the preferred language of a patient when communicating with them. Research suggests that individuals with obesity prefer their medical providers to use the words, “BMI” and “weight” when referring to excess adiposity.65-68

Weight Bias and Sensitivity Training

In addition to patient-centered language, addressing the issue of weight bias among health care professionals is a critical undertaking. In a sample of 2,449 people with obesity, 69% reported experiencing weight stigma from doctors, 46% from nurses, 37% from RDNs, and 21% from mental health professionals.69 As such, it is a requirement for a Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP) to provide bariatric or obesity sensitivity training to everyone at their institution.70 These trainings should address the necessity for patient-centered care, person-first language, and identification and awareness of explicit and implicit weight bias among health care professionals working with MBS patients. In order to assess implicit weight bias, visit the Project Implicit website (www.implicit.harvard.edu).71 Awareness of one’s bias is the first step in changing it. Thus, RDNs are uniquely poised to champion for antiweight bias, sensitivity training, and the use of patient-first language in the field of MBS.
References

CHAPTER 2

Evaluation and Nutrition Care of Preoperative Patients

Introduction

During the preoperative phase, metabolic and bariatric surgery (MBS) patients undergo surgical, medical, psychological, and nutrition evaluation. In addition to program requirements, patients who are using insurance benefits will need to meet insurance requirements. Some insurance providers will not authorize surgery until patients participate in a medically supervised weight loss program.

The registered dietitian nutritionist (RDN) has a crucial role in preparing the patient for optimal surgical success. At this point, the RDN provides nutrition education and counseling to help patients understand the necessary lifestyle changes, improve weight-related conditions, and resolve vitamin and mineral deficiencies. They also help manage patient expectations for outcomes.

Preoperative Evaluation

The Clinical Practice Guidelines published in 2019 were a collaboration of the American Association of Clinical Endocrinologists (AACE), The
Obesity Society (TOS), American Society for Metabolic and Bariatric Surgery (ASMBS), Obesity Medicine Association (OMA), and American Society of Anesthesiologists (ASA). These practice guidelines recommend that the preoperative work-up includes a comprehensive medical history, psychosocial-behavioral evaluation, clinical nutrition evaluation, and laboratory testing.1

Medical Evaluation

The preoperative medical evaluation includes assessment of obesity-related conditions and causes of obesity.1 The evaluation may be conducted by a bariatric surgeon, an obesity medicine specialist, or an advanced practice provider specializing in obesity management. Box 2.1 provides an overview of the data collected during the initial medical evaluation.

BOX 2.1 Components of Preoperative Medical Evaluation

- Complete history and physical reviewing obesity-related conditions, causes of obesity, weight history, and possible contraindications to surgery
- Physical examination including measurement of height and weight, calculation of body mass index, evaluation of blood pressure, pulse, and respiration rate
- Cardiopulmonary evaluation with sleep apnea screening
- Gastrointestinal evaluation
- Endocrine evaluation
- Pregnancy test
- Laboratory tests to evaluate vitamin and mineral status and determine the need for additional testinga

a See Box 2.5 on page 35 for more information.

Surgical Evaluation

The bariatric surgeon conducts a surgical evaluation (see Box 2.2 on page 32). An important component of the surgical evaluation is the selection of surgery. This decision is made together through consideration
of patient preferences and desired health outcomes, expertise of the surgeon and institution, results of the integrated health team’s evaluation, and personalized risk stratification.1 To provide valuable insight for the surgery selection process, the RDN should understand the types of surgery, mechanisms of actions, and outcomes on comorbidities and weight (see Chapter 1).

Following the evaluations from the interdisciplinary team, the final clearance to proceed with surgery is generally provided by the surgeon who will perform the procedure. At this time, medical need has been established, no medical or psychological contraindications have been identified, medical comorbidities are well managed, and the patient has expressed good understanding and commitment to the planned surgical intervention.1

Psychosocial Evaluation

The primary goal of a preoperative psychological evaluation is to identify risk factors or potential postoperative challenges that could negatively impact surgical outcomes (see Box 2.3). The evaluation may lead to recommendations of additional management or intervention before or after surgery. It also serves to develop trust and rapport between the clinician and patient for a long-term supportive relationship after surgery. The psychological evaluation may be performed by a licensed behavioral health clinician who specializes in the field of obesity, MBS, or eating disorders.2 The behavioral health clinician and RDN work closely together for assessment and treatment of disordered eating behaviors and health-related behaviors that could limit a patient from achieving optimal outcomes after surgery.
Evaluation and Nutrition Care of Preoperative Patients

Nutrition Evaluation

A preoperative nutrition assessment guides the RDN’s nutrition diagnoses and intervention recommendations. This clinical interview allows the RDN to learn about the patient’s weight history, current eating behaviors, social support system, and MBS knowledge to gather information to determine the patient’s nutritional status and to manage expectations for life after surgery. This is also an opportunity to establish rapport with the patient and to promote the value of a lifelong relationship with the bariatric team.

Box 2.4 on page 34 shows data the RDN should collect or analyze during the preoperative nutrition assessment. See Figure E.1 on page 270 for a preoperative nutrition evaluation template using the Nutrition Care Process (NCP).
The RDN should assess the findings of the laboratory studies listed in Box 2.5 in the preoperative nutrition evaluation.1,5

Biochemical Surveillance

Food/Nutrition-Related History

The preoperative nutrition evaluation includes a food/nutrition-related history. Items in the history include assessment of nutrient intake, eating patterns, and nutrition management.
Preoperative Laboratory Studies

Liver function tests
Lipid profile
Complete blood count with differential
Hemoglobin A1c
Serum iron, ferritin, and total iron-binding capacity
Serum vitamin B12 and methylmalonic acid
Serum vitamin B1 (thiamin)
Red blood cell (RBC) folate and serum homocysteine
Intact parathyroid hormone, 25-hydroxyvitamin D, serum alkaline phosphatase
Retinol-binding protein and plasma retinol (vitamin A status)
Plasma a-tocopherol (vitamin E status)
Des-gamma-carboxy prothrombin (vitamin K status)
Serum zinc or RBC zinc
Serum copper or ceruloplasmin

*Indicated only in patients having Roux-en-Y gastric bypass or biliopancreatic diversion with duodenal switch.

Nutrient Intake and Eating Patterns

The nutrient intake assessment includes information on overall energy intake, protein-rich foods, calorically dense foods, nutritive quality of foods, and alcohol consumption. The RDN should assess intake patterns, with attention to the following:

- meals eaten away from home
- frequency of eating including all meals and snacks
- pace of eating
- disordered eating patterns, such as binge eating, night eating, and grazing
- emotional, habitual, and other nonhunger triggers for eating
Nutrition Management
The nutrition history also should include aspects of the client’s nutrition management, including:

- nutrition knowledge and attitudes;
- weight loss readiness;
- confidence, readiness, and motivation to make behavior changes;
- self-monitoring abilities;
- social and family support; and
- economic and time limitations related to the purchase or preparation of food.

Energy Requirements
Energy requirements can be assessed most accurately using indirect calorimetry. In the absence of indirect calorimetry, resting metabolic rate (RMR) can be estimated using the Mifflin-St. Jeor equation and the client’s actual body weight, as shown in Box 2.6.

Box 2.6 Mifflin-St. Jeor Formula for Estimating Resting Metabolic Rate

\[
\text{Men resting metabolic rate in kcal/d} = (10 \times \text{weight in kg}) + (6.25 \times \text{height in cm}) - (5 \times \text{age in years}) + 5
\]

\[
\text{Women resting metabolic rate in kcal/d} = (10 \times \text{weight in kg}) + (6.25 \times \text{height in cm}) - (5 \times \text{age in years}) - 161
\]

Specific recommendations for transgender and gender-diverse people were not provided.

To estimate total energy needs, the RMR is multiplied by a physical activity factor as outlined in the following:

- sedentary: 1.0 to 1.39
- low active: 1.4 to 1.59
- active: 1.6 to 1.89
- very active: 1.9 to 2.5
Nutrition-Related Physical Findings

In addition to reviewing laboratory data, the RDN should identify physical factors that suggest nutrient deficits. Appendix D lists a selection of physical findings that may be noted in the medical evaluation or witnessed by the RDN.

Nutrition Intervention

After completing the nutrition assessment, the RDN determines a nutrition intervention. Common preoperative interventions include weight stabilization or loss; addressing vitamin and mineral deficiencies; improvement of glycemic management; and education on nutrition, lifestyle, and behavioral changes.

Preoperative Diets and Weight Loss

Research does not support a mandate of weight loss for all patients prior to MBS. With surgery being the most effective intervention for obesity, withholding it until an arbitrary degree of weight loss is achieved is considered an inappropriate and potentially harmful practice. A surgeon or program may prescribe weight loss in specific cases, such as a patient with a body weight that exceeds the weight limit of the program’s equipment or a patient with a body weight distribution that will increase the risks associated with surgery.

The RDN can help patients establish goals that promote weight stabilization before surgery and instill healthy habits that will likely contribute to success after surgery. These goals should be developed collaboratively with the patient and may address nutrient density of the diet, protein-based meals, structured eating patterns, eating behaviors that will prevent gastrointestinal distress, and increased physical activity.

Independent of weight loss, a short-term, low-carbohydrate diet can reduce liver glycogen stores resulting in liver volume reduction and improved access to the stomach during surgery. These diets can be a mix of meal replacements, protein shakes, and real foods. They are effective when prescribed for the 2 weeks leading up to surgery with a daily...
carbohydrate intake of less than 50 g and individualized daily calorie restriction to prevent weight gain.10-12

Repletion of Vitamin and Mineral Deficits

Patients seeking MBS may have vitamin and mineral deficiencies that need to be identified and corrected before surgery.1,5 See Appendix D for examples of potential micronutrient deficiencies related to obesity as well as repletion guidelines.

Glycemic Management

Blood glucose management before MBS can reduce the risk of postoperative infections and promote wound healing. The AACE/TOS/ASMBS guidelines encourage optimization of blood glucose through medical nutrition therapy, physical activity, and pharmacotherapy and have recommended the glycemic targets listed in Box 2.7.1 Considering that surgery is a recognized treatment for type 2 diabetes mellitus, individualization of targets is crucial to ensure that patients who can benefit from surgery are not unnecessarily prevented from receiving it.13

BOX 2.7 Glycemic Targets Before Metabolic and Bariatric Surgery1

Hemoglobin A1c
Desired goal is hemoglobin A1c (HbA1c) 7.0% or less
HbA1c of 7% to 8% should be considered for patients with advanced microvascular or macrovascular complications, extensive comorbid conditions, or long-standing diabetes where intensive efforts have not produced lower HbA1c
For patients with HbA1c more than 8%, clinical judgment needed to proceed with surgery

Blood glucose levels
Fasting blood glucose: 110 mg/dL or less
2-hour postprandial blood glucose: 140 mg/dL or less
Preoperative Carbohydrate Loading

Enhanced recovery after MBS protocols have been implemented in the field of colorectal surgery for several years and are credited with converting inpatient surgeries to day surgeries. These protocols are now being applied in the field of MBS. Enhanced recovery protocols rely on the collaboration of the patient, interdisciplinary team, and institution administration. They include multiple interventions at all phases of surgery. Common interventions include prehabilitation, skin prep prior to surgery, tight glycemic management, scheduled dosing of nonopioid analgesics before and after surgery and minimizing the use of fluids, tubes, and drains intraoperatively as well as postoperative radiologic studies. In a study with 36 participating centers performing Roux-en-Y gastric bypass, sleeve gastrectomy, and adjustable gastric banding surgeries, adherence to an enhanced recovery protocol reduced the length of stay from 2.24 to 1.76 days without an increased risk of bleeding, reoperation, or readmission.

A component of prehabilitation is preoperative carbohydrate loading. Although a minimum of 6 to 8 hours of preoperative fasting is requested by many surgeons and anesthesiologists, technical advances have made this practice questionable. Studies have not demonstrated a greater risk of aspiration with a shortened fast of 2 to 3 hours. Preoperative fasting leads to insulin resistance; a physiological state of stress; and increased thirst, hunger, and anxiety in patients.

Research suggests that oral ingestion of 100 g carbohydrate the night before surgery and 50 g carbohydrate 2 hours before surgery can shift the body from fasting to a fed state. A preferred beverage to achieve this purpose is a clear liquid with 12% carbohydrate coming from complex carbohydrates, such as maltodextrin. There are beverages on the market that have been designed to these exact specifications. However, many MBS programs that are trialing preoperative carbohydrate loading use clear liquid sports drinks or fruit juices. Although it is unclear if this extrapolation of the literature results in the same benefits when compared with a complex carbohydrate beverage, the evidence supporting a shortened preoperative fast is mounting.
Nutrition Education and Counseling

Preoperative nutrition education is encouraged to help patients understand the changes they will need to make after surgery. The RDN can provide these nutrition interventions on a one-on-one basis or in small groups. Recommended topics of discussion include:

- the impact of surgery on the gastrointestinal tract,
- eating behaviors to prevent gastrointestinal distress,
- preoperative diet preparation,
- postoperative diet progression, and
- vitamin and mineral supplementation.

Lifestyle and Behavior Changes

Initiation of lifestyle changes can result in weight loss before surgery, which may align with insurance or program requirements. In addition, healthy changes to diet and exercise patterns may position patients for improved long-term postoperative success. Discussing behavior change before surgery allows patients time to become aware of their habits related to food and exercise and make necessary changes for improved postoperative outcomes. Box 2.8 provides examples of preoperative behavior modification and nutrition goals. Appendix H provides information on education and counseling techniques.

Nutrition Care Process Case Study

Box 2.9 on page 42 offers a case study with application of the NCP to the preoperative period.

Health Insurance Requirements

If a patient is using health insurance benefits to subsidize the cost of surgery, they will be required to meet the requirements from the insurance
Preoperative evaluation and nutrition care of preoperative patients is crucial. Some companies have minimal criteria—for example, a BMI of 35 or greater along with comorbidities or a BMI of 40 or more without comorbidities and a history of inability to achieve durable weight loss. Other companies have rigorous requirements that may include a specified duration of obesity, age limits, drug/alcohol screenings, or participation in medically supervised weight loss programs.

Despite it being a requirement by many insurance providers, there is limited evidence to support mandated preoperative weight loss in order to receive surgical treatment. Some insurance companies have acknowledged the lack of evidence while others continue to require a weight loss program; see Box 2.10 on page 43 for examples of insurance requirements. Typical programs are 3 to 6 months long with patients monitored by a physician or other health care provider, such as an RDN.

BOX 2.8 Preoperative Behavior Modification and Nutrition Goals

Behavior modification goals
- Follow a structured eating pattern.
- Practice mindful eating.
- Eat in designated eating areas, preferably without distraction.
- Use smaller plates (recommend patients use 7- to 9-inch plates).
- Avoid drinking with meals.
- Self-monitor eating and physical activity.
- Observe environmental cues to nonhunger eating.
- Develop awareness of physical hunger and satiety.

Nutrition goals
- Decrease/eliminate fast food meals.
- Eliminate calorie-containing beverages.
- Decrease processed foods and added sugars.
- Focus on increasing intake of lean protein foods, whole fruits and vegetables, and whole grains.
- Drink 48 to 64 oz of no- or low-calorie fluids throughout the day.
BOX 2.9 Nutrition Care Process Case Study for Preoperative Metabolic and Bariatric Surgery Patient

Nutrition assessment

Patient has a long history of dieting and weight cycling, has type 2 diabetes mellitus, and reports daily intake of six regular sodas. Patient meal and snack patterns are not structured. Patient reports snacking excessively between meals. Patient reports a sedentary lifestyle.

Nutrition diagnosis (PES [problems, etiology, signs and symptoms] statement)

Predicted excessive energy intake related to undesirable food choices of sugar-sweetened beverages as evidenced by intake history of six regular sodas per day.

Nutrition intervention

- Decreased energy diet—reduction in sugar-sweetened beverages
- Modified schedule of foods/fluids—development of structured eating pattern
- Nutrition education content: physical activity guidance
- Nutrition counseling based on:
 - transtheoretical model to stages of change approach
 - motivational interviewing strategy to clarify benefits vs costs of changing
 - cognitive behavioral theory approach to identify substitutes for sugar-sweetened beverages
- Collaboration and referral of nutrition care: referral by nutrition professionals to other providers; referral to exercise physiologist or community program for development of exercise prescription

Nutrition monitoring and evaluation

At follow-up appointment in 2 weeks, evaluate progress with goals. The following outcome indicators are monitored and evaluated:

- Fluid intake: sugar-sweetened beverage estimated oral intake in 24 hours
- Food intake: meal/snack pattern
- Physical activity
 - Consistency
 - Frequency
 - Duration
 - Intensity
BOX 2.10 Sample Insurance Requirements

No medical weight loss required

The individual should have documented failure to respond to conservative measures for weight reduction prior to consideration of MBS, and these attempts should be reviewed by the practitioner prior to seeking approval for the surgical procedure. As a result, some centers require active participation in a formal weight reduction program that includes frequent documentation of weight, dietary regimen, and exercise. However, there is a lack of evidence on the optimal timing, intensity, and duration of nonsurgical attempts at weight loss and whether a medical weight loss program immediately preceding surgery improves outcomes.

Medical weight loss required

Documentation of active participation for a total of at least 3 consecutive months in a structured, medically supervised nonsurgical weight reduction program. A comprehensive commercial weight loss program is an acceptable program component, but it must be approved and monitored under the supervision of the health care practitioner providing medical oversight. Comprehensive weight loss programs generally address diet, exercise, and behavior modification (eg, WW or Nutrisystem).

Documentation from the clinical medical records must indicate that the structured medical supervision meets all of the following criteria:

- Occur during a total of at least 3 consecutive months within the 12 months prior to the request for surgery
- Include at least two visits for medical supervision, during the 3 consecutive months of program participation. One visit must occur at the initiation, and another at least 3 months later
- Be provided by an MD, DO, NP, PA, or RDN under the supervision of an MD, DO, NP, or PA
- Include assessment and counseling concerning weight, diet, exercise, and behavior modification
Some insurance providers stipulate that the program include counseling concerning weight, diet, exercise, and behavior modification, but they typically do not specify a therapeutic diet for preoperative bariatric patients. Centers may tailor the preoperative weight loss program based on individual client needs or use a standard weight loss program.

Access to care is a barrier for many people pursuing MBS. The Obesity Action Coalition (OAC) has resources for patients and providers to use when navigating insurance requirements. Box 2.11 contains a list of questions recommended by the OAC when speaking with insurance providers to verify benefits.

BOX 2.11 Questions to Ask When Verifying Benefits

- What are your health insurance benefits?
- What is the definition of stage III obesity according to your plan?
- If any, what coverage of stage III obesity is listed?
- What limits or requirements are stated in order to receive stage III obesity treatment? For example:
 - Is there a certain amount of required time you must document attempted weight loss?
 - Does the documented time have to be consecutive?
 - Is your physician required to document your weight loss attempts?
 - Do you need to weigh a certain amount before treatment is performed or initiated?
 - Is there an age requirement to receive care?
 - Must you use a specific Center of Excellence or medical provider to receive coverage?
 - Are there weight limitations preventing coverage?
- Is there a maximum dollar limit on your benefits?
- What treatment options are excluded or specifically included?
- What is the copayment for medical services?
- What testing is covered, such as nutritionist, psychologist, laboratory, sleep apnea study, and ultrasounds?
- Does your insurer require weight loss prior to surgery? If so, what percentage or number of pounds is required?
References

Index

AACE. See American Association of Clinical Endocrinologists
AAP. See American Academy of Pediatrics
Academy of Nutrition and Dietetics, 219, 314
 Code of Ethics for the Nutrition and Dietetics Profession, 22
 Evidence Analysis Library, 185, 219
acarbose (Precose), for postbariatric hyperglycemia, 154
acceptance-based behavioral therapy, 115
addiction transfer, 60–61
adjustable gastric band. See laparoscopic adjustable gastric banding (LAGB)
adolescents
 bariatric surgery in, 129–130
 family support for, 133
 follow-up visit schedule, 137
 inpatient nutrition, 135–136, 137
 obesity in, 1–2, 129
 postoperative care, 136–138, 138
 postoperative nutrition assessment, 138, 139
 postoperative nutrition interventions, 138–144
 postoperative nutrition diagnosis, 145
 postoperative nutrition monitoring/evaluation, 145
 preoperative education for, 134–135
preoperative evaluation in, 131, 131–132, 133–134
preoperative weight loss in, 135, 136
aerobic exercise, 117
alcohol intake, 60–61, 143–144
altered gastrointestinal function, 74, 77–79
American Academy of Pediatrics (AAP), 130
American Association of Clinical Endocrinologists (AACE), 31, 38, 219
American College of Surgeons, 4, 20
 Bariatric Surgery Center Network, 95
American Medical Association, 115
American Society for Metabolic and Bariatric Surgery (ASMBS), 4, 5, 31, 38, 131, 133, 220
 on alcohol intake after surgery, 61
 ASMBS Integrated Health Support Group Manual, 22, 220
 on metabolic bone changes, 138
 on preoperative weight loss, 135
American Society for Parenteral and Enteral Nutrition (ASPEN), 185, 188, 191, 192
 clinical guidelines, 188
American Society of Anesthesiologists (ASA), 31
anemias, 140–141, 261–263
anthropometric measurements
 nutrition support therapy, 187
 postoperative, 69, 96
in pregnant people, 170–171
weight regain, 120
antibiotic-associated diarrhea, 78b
ASA. See American Society of
Anesthesiologists
ASMBS. See American Society for
Metabolic and Bariatric Surgery
ASPEN. See American Society for
Parenteral and Enteral Nutrition
aspiration therapy, 210–212

band erosion, 291
band prolapse, 292
band slippage, 292

bariatric surgery
in adolescents, 129–130
choice of procedure, 18, 20
morbidity/mortality outcomes of,
14, 16, 18, 18t
and registered dietitian
nutritionists, 20, 21f, 22–23
role of gut hormones in, 13b–14b
selection criteria for, 2–3, 4b, 132b
types of, 5, 6f–11f, 12
weight loss outcomes of, 14,
15b–16b, 17t, 87, 308

behavior change, 312–313
cognitive behavioral therapy, 315
health belief model, 313
motivational interviewing,
315–316
transtheoretical model, 314

behavior modification
for adolescents, 138
postoperative, 65, 114, 115,
116b–117b, 122
preoperative, 40, 41b

beriberi, 250, 300
biliopancreatic diversion (BPD), 5
biliopancreatic diversion with
duodenal switch (BPD/DS), 5, 9f
complications of, 297
fluid intake after, 53
glucose levels after, 95
hospital length of stay for, 48
micronutrient deficiencies after,
232, 233b, 237b, 238b, 240b, 241b,
243b, 244b, 249b, 250b, 251b
morbidity/mortality outcomes
of, 16, 18t
postbariatric hypoglycemia after,
91
pregnancy after, 167
weight loss outcomes of, 17t, 63t,
87
weight management after, 88

biochemical surveillance
anemias, 261b–263b
fat-soluble vitamins, 267b
metabolic bone disorders,
264b–265b
neurologic disorders, 266b
postoperative, 70f, 98, 253–267
of pregnant people, 169
preoperative, 34, 35b
schedule for, 255, 257t–259t
weight regain, 121

biotin, 307
blood glucose management
postoperative, 94–95
preoperative, 38, 39b

BMI. See body mass index
body mass index (BMI)
criteria, for overweight/obesity, 3b
during pregnancy, 169b
body weight classification, 3b
bolus feedings, 194. See also enteral
nutrition
BPD. See biliopancreatic diversion
BPD/DS. See biliopancreatic diversion
with duodenal switch
calcium, 141, 230b, 242, 244b, 264b
calcium oxalate stones, 164
carbohydrate intake, 156b, 157b
carbohydrate loading, preoperative, 39

Carbohydrate-to-insulin ratio, 156b

case study, nutrition care process
 in postoperative phase, 80b–81b
 in preoperative phase, 42b

CBT. See cognitive behavioral therapy

CDC. See Centers for Disease Control
 and Prevention

CDR. See Commission on Dietetic
 Registration

Centers for Disease Control and
 Prevention (CDC), 220

cholesterol levels, 95

choline, 173b

chronic kidney disease (CKD), 160,
 161b–163b

CKD. See chronic kidney disease

classical conditioning, 314

clear liquid diet, postoperative, 49–50,
 136, 208, 213, 224–225, 224

client-centered counseling, 316

Clinical Practice Guidelines, 30–31

Clostridium difficile colitis, 78b

cognitive behavioral therapy (CBT),
 122, 315

collaboration, 175

Commission on Dietetic Registration
 (CDR), 131

comorbidities, postoperative, 16, 18t,
 93–96, 94b

concentrated enteral formulas, 194

constipation, 78b, 294–295

contraception, 166–167

copper, 230b, 239, 241b, 263b

counseling, 174

cultural influences, 317

dehydration, 53, 55, 189, 289, 300–301. See also hydration
delayed gastric emptying, 209, 212

DEXA. See dual energy X-ray
 absorptiometry

DIAAS. See Digestible Indispensable
 Amino Acid Score
diabetes. See type 1 diabetes; type 2
 diabetes

diabetic ketoacidosis, 157b

diarrhea, 78b, 297–298
diazoxide (Proglycem), for
 postbariatric hyperglycemia, 154b
diet
 clear liquid diet, 49–50, 136, 208,
 213, 224–225, 224
 full liquid diet, 50–54, 208, 213,
 225
 low-carbohydrate diet, 37–38
 postoperative diet, 0–3 months,
 49–57, 224–227
 postoperative diet, 3–12 months,
 57, 59–61
 preoperative, 37–38, 136b
 preprocedure/postprocedure,
 intragastric balloons, 208
 progression, in adolescents, 140
 reduced calorie and reduced
 carbohydrate diet, for
 adolescents, 136b
 regular texture diet, 57, 227
 semisolid diet, 54–57, 54b, 58b,
 226, 274f–275f

Digestible Indispensable Amino Acid
 Score (DIAAS), 52
diuretics, 301
dizziness, 304–305
documentation tools, 269, 270f–282f
dual energy X-ray absorptiometry
 (DEXA), 133, 138
dumping syndrome, 51, 56, 77b, 169,
 296–297, 297b
eating patterns, preoperative
 assessment of, 35

%EBL. See percentage of excess weight
 loss

EBTs. See endoscopic bariatric
 therapies

EBW. See excess body weight,
 calculation of
echocardiography, 138
empathy, 317
EN. See enteral nutrition
endoscopic bariatric therapies (EBTs), 205–206
 aspiration therapy, 210–212
 emerging therapies, 214
 endoscopic sleeve gastroplasty, 212–213
 intragastric balloons, 206–209
 revisional procedures, 213–214
endoscopic sleeve gastroplasty (ESG), 212–213
end-stage renal disease (ESRD), 160, 162b–163b
energetic adaptations of adolescents after surgery, 142–143
energy intake/requirements, 114
 excessive, 75b
 in nutrition support therapy, 185, 188b
 postoperative, 66b, 96–97
 during pregnancy, 171, 172b, 174
 preoperative assessment of, 36–37, 36b
enhanced recovery, postoperative, 49, 49b
enteral nutrition (EN). See also nutrition support therapy
 advantages/disadvantages of, 186b
 complications, management strategies for, 198b–199b
 formula selection for, 193–194
 indications for, 185, 184b
 infusion types, 194
 monitoring/evaluation of, 197, 198b–199b
 route of access for, 192–193
environment of adolescents after surgery, 142
erythromycin, for delayed gastric emptying, 209
ESG. See endoscopic sleeve gastroplasty
esophageal dilation, 291
ESRD. See end-stage renal disease
euglycemic ketoacidosis, 157b
excess body weight (EBW), calculation of, 14, 15b
excessive oral intake, 72b
exercise, 156b, 207–208
family support, for adolescents, 133–135
fat-free mass (FFM), 140
fatigue, 305
fat-soluble vitamins, 230b, 267b
fertility, 144, 166. See also pregnancy
FFM. See fat-free mass
fluid intake
 of adolescents, 138–139
 during full liquid diet stage, 53–54, 53b
 inadequate, 73b, 76b
 during nutrition support therapy, 189–190, 190b
 postoperative, 66b, 138–139
 during pregnancy, 172b
 during semisolid/soft food diet stage, 55, 58b
folate, 173b, 230b, 234–235, 237b–238b, 262b
folic acid. See folate
follow-up nutrition visits, 66
documentation, 278f–282f
LAGB patient's hunger/need to refill, assessment of, 282, 283f–285f
food and nutrition-related history
 nutrition support therapy, 187b
 postoperative, 97–98
 in pregnant people, 170
 preoperative, 34
 weight regain, 120
food intolerances, 59, 67b, 303
fruits/vegetables, postoperative intake of, 54–56
Index

full liquid diet, postoperative, 50–54, 208, 213, 225

by IV, 289, 300
maintenance, after EBTs, 208–209, 213

hyperparathyroidism, secondary, 141

hypoglycemia
postbariatric, 91, 150–153, 152b–155b, 296
and type 1 diabetes, 156, 159b

hypokalemia, 211

hypertension, 18t, 96

hypertensive medications, 301

hypocaloric feeding, 185, 189

IAA. See indispensable amino acids

IFSO. See International Federation for the Surgery of Obesity and Metabolic Disorders

IGBs. See intragastric balloons

incisionless anastomosis system, 214

indirect calorimetry, 36, 96–97, 143, 185

indispensable amino acids (IAA), 52

infertility, 144, 166

informational resources, 219–223

inpatient nutrition for adolescents, 135–136, 137b

Institute of Medicine, recommendations for weight gain during pregnancy, 169b

insulin, 155, 156b. See also type 1 diabetes
insurance, 40–41, 43b, 44, 44b, 134, 208

International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO), 220

intragastric balloons (IGBs)
mechanism of action, 206
nutritional recommendations, 207–209
single fluid-filled balloon system, 206, 208
three gas-filled balloon system, 207, 208

iron, 230b, 232–233, 233b, 261b
iron-deficiency anemia, 140–141

iron, 230b, 232–233, 233b, 261b

iron-deficiency anemia, 140–141

headache, 304–305

health belief model, 313

health insurance, 40–41, 43b, 44, 44b, 134, 208

heartburn, 305–306

hemoglobin A1c (HbAlc), 39b

high-density lipoprotein (HDL), 95

hydration. See also dehydration
for adolescents, 138–139
during clear liquid diet, 50
during full liquid diet, 53–54, 53b

HbAlc. See hemoglobin Alc

HDL. See high-density lipoprotein

Harris Benedict equation, 97

HbA1c. See hemoglobin A1c

headache, 304–305

health belief model, 313

health insurance, 40–41, 43b, 44, 44b, 134, 208

heartburn, 305–306

hemoglobin Alc (HbAlc), 39b

high-density lipoprotein (HDL), 95

hydramnios. See gestational diabetes mellitus (GDM)
gastric band. See also laparoscopic adjustable gastric banding (LAGB)

gastroesophageal reflux disease (GERD), 18t, 96, 306
gastrointestinal symptoms, postoperative, 67b
gastrojejunal anastomosis, dilation in, 213

GDM. See gestational diabetes mellitus

GERD. See gastroesophageal reflux disease

gestational diabetes mellitus (GDM), 167, 169
ghrelin (gut hormone), 13b–14b, 89

glucagon-like peptide-1 (gut hormone), 13b

glucagon-like peptide-1 analogs, for postbariatric hyperglycemia, 154b

glycemic control, postoperative, 94–95, 155. See also type 1 diabetes; type 2 diabetes

glycemic management, preoperative, 38, 38b

gnawing sensation in stomach, 209

gut hormones, 13b–14b, 95

hair shedding/hair loss, 91–92, 92b, 307

Harris Benedict equation, 97
IV hydration, 289, 300. See also dehydration

kidney stones, 164

laboratory studies. See biochemical surveillance
lactose, ingredients containing, 302b
lactose intolerance, 301–302
LAGB. See laparoscopic adjustable gastric banding
language, patient-centered, 22–23
laparoscopic adjustable gastric banding (LAGB), 5, 6f
adjustments to, 64–65, 65b, 227, 282, 283f–285f
in adolescents, 130
complications of, 89–90, 91b, 168, 291–292
fluid intake after, 54
and food intolerance, 59
glucose levels after, 95
hospital length of stay for, 48
micronutrient deficiencies after, 232, 233b, 236b, 237b, 239b, 241b, 242b, 244b, 247b, 249b, 251b
morbidity/mortality outcomes of, 16, 18t
pregnancy after, 167–168
weight loss outcomes of, 17t, 62, 63t, 87, 308–309
weight management after, 88–89
weight regain after, 110
late dumping syndrome. See postbariatric hypoglycemia (PBH)
laxatives, 295
leak, 290
leg cramps, 288, 306
lifestyle/behavior changes, 205
preoperative, 40, 41b
lightheadedness, 304–305
liraglutide (Saxenda), 118b

LOC. See loss of control eating
Look AHEAD trial, 108
lorcaserin (Belviq, Belviq XR), 118b
loss of control (LOC) eating, 144
low-carbohydrate diet, 37–38

magnesium, 252, 265b
malabsorption, 5, 79b, 304
Mayo Clinic, 220
MBSAQIP. See Metabolic Bariatric Surgery Accreditation and Quality Improvement Program
meal replacement products, 135
medical evaluation, preoperative, 31, 31b
medical nutrition therapy (MNT), 20, 87, 95
medical surveillance, postoperative, 98
Medicare, 18
medications
hypertensive, 301
for postbariatric hypoglycemia, 152–153, 154b
weight loss, 115, 118b, 119
medic-gastric bypass (MGB), 12
metabolic adaptations of adolescents after surgery, 142–143
Metabolic Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP), 23, 221
metabolic bone disorders, 264b–265b
metabolic changes, 5, 12, 95
MGB. See medic-gastric bypass
MI. See motivational interviewing
micronutrient deficiency/supplementation
for adolescents, 140–141
counseling considerations, 231b
delivery methods, 231
forms, 230, 230b
in nutrition support therapy, 191–192, 194–195, 196b
Index

postoperative, 61, 67b, 90–91, 225, 226, 227, 228–252, 256, 260
preoperative repletion of, 39, 256

Mifflin-St. Jeor equation, 36, 36b, 97, 143

mindful eating, 116b, 143

mineral deficiency/supplementation for adolescents, 140–141
inadequate intake, 71b–72b
in nutrition support therapy, 191–192, 194–195, 196b
postoperative, 61, 67b, 90–91, 225, 226, 227, 228–252, 256, 260
during pregnancy, 173b
preoperative repletion of, 39, 256

MNT. See medical nutrition therapy modeling (cognitive behavioral therapy), 315

morbidity/mortality outcomes, of bariatric surgery, 14, 16, 18, 18t

motivational interviewing (MI), 134, 315–316

multidisciplinary team approach, 122, 131, 137, 175, 202

multivitamin supplements, 232, 252.
See also micronutrient deficiency/supplementation

naltrexone/bupropion (Contrave), 118b

narcotics, 299

National Heart, Lung, and Blood Institute (NHLBI), 221

National Institute of Diabetes and Digestive and Kidney Diseases (NIDDKD), 221

National Institutes of Health (NIH), 4b
Consensus Development Conference Panel, 2

National Medicines Database, 221

nausea, 299–300

NCP. See Nutrition Care Process
neurologic disorders, 266b

NHLBI. See National Heart, Lung, and Blood Institute

NIDDKD. See National Institute of Diabetes and Digestive and Kidney Diseases

nifedipine (Procardia XL), for postbariatric hyperglycemia, 154b

NIH. See National Institutes of Health
nutrient intake, preoperative assessment of, 35
nutrition assessment
in adolescents, 133–134, 138, 139b
case study of, 42b, 80b, 81b
diabetes, 155, 156b–157b
for nutrition support therapy, 185, 187b–188b, 189–192, 190b
postoperative, 66, 66b–70b, 70–71, 80b, 81b, 96–98, 99b–100b, 138, 139b, 274f–277f
during pregnancy, 168–171
preoperative, 33–37, 34b, 42b, 134, 270f–273f
postbariatric hypoglycemia, 152
weight regain, 120–121

Nutrition Care Process (NCP)
case study, 42b, 80b–81b
documentation tools, 269, 270f–282f

nutrition diagnosis
in adolescents, 145
diabetes, 155, 157b
with nutrition support therapy, 192, 193b
postoperative, 71, 71b–75b, 80b, 81b, 98, 99b–100b, 145
for pregnant people, 171, 172b
preoperative, 42b
weight regain, 121

nutrition education/counseling, 318
behavior change, 312–316
client-centered counseling, 316
cultural influences, 317
empathy, 317
for IGB patients, 207–208
postoperative, 122, 142
for pregnant people, 174
preoperative, 40, 42b, 134–135
shared decision-making, 317
solution-focused therapy, 316
nutrition goals, preoperative, 41b
nutrition intervention
for adolescents, 138–144
diabetes, 157, 158b–159b
with nutrition support therapy, 192–193, 196b
for postbariatric hypoglycemia, 152, 153b
postoperative, 75, 76b–79b, 98–99, 101b, 138–144
for pregnant people, 171, 172b–173b, 174–175
preoperative, 37–40, 39b, 41b
weight regain, 121–122
nutrition management, preoperative assessment of, 36
nutrition monitoring/evaluation
for adolescents, 145
after weight regain, 122
diabetes, 157, 158b–159b
in nutrition support therapy, 197, 198b–201b
postoperative, 75, 76b–79b, 98–99, 101b, 145
for pregnant people, 175–176
preoperative, 42b
for postbariatric hypoglycemia, 153, 155b
nutrition prescription
postoperative, 80b, 81b
preoperative, 42b
nutrition-related complications, 89–92, 91b, 92b
nutrition-related physical findings
exam, 260
nutrition support therapy, 187b
postoperative, 69b
for pregnant people, 171
preoperative, 37
with weight gain, 121
nutrition support therapy, 183. See also enteral nutrition; parenteral nutrition
indications for, 183–185, 184b
monitoring/evaluation in, 197, 198b–201b
nutrition assessment for, 185, 187b–188b, 189–192, 190b
nutrition diagnosis for, 192, 193b
nutrition intervention, 192–195, 196b
team approach to, 202
transitioning between, 197
OAC. See Obesity Action Coalition
OAGB. See one-anastomosis gastric bypass
obesity
in adolescents, 129
prevalence of, 1, 129
Obesity Action Coalition (OAC), 44, 222
obesity hypoventilation syndrome (OHS), 96
Obesity Medicine Association (OMA), 31, 119, 222
The Obesity Society (TOS), 31, 38, 222
obstruction, 290
obstructive sleep apnea, 18t
octreotide (Sandostatin), for postbariatric hyperglycemia, 154b
ODS. See Office of Dietary Supplements
Office of Dietary Supplements (ODS), 222
OHS. See obesity hypoventilation syndrome
OMA. See Obesity Medicine Association
omega-3 fatty acids, 173b
one-anastomosis gastric bypass (OAGB), 5, 11f, 12
complications of, 297
fluid intake after, 53
Index

329

glucose levels after, 95
hospital length of stay for, 48
weight loss outcomes of, 63t, 87
weight management after, 88
weight regain after, 111
online resources, 219–223
operant conditioning, 314–315
orlistat (Alli), 118b

overweight/obesity, 2, 3b

oxalate stones, 164

parenteral nutrition (PN). See also
nutrition support therapy
access route for, 195
advantages/disadvantages of, 186b
complications, management
strategies for, 200b–201b
indications for, 184b, 185
initiation and advancement of, 195
monitoring/evaluation of, 197, 200b–201b
patient adherence to postoperative
diet, 56–57, 58b, 140, 141
patient-centered care, 22, 140
patient-centered language, 22–23
shared decision-making, 317
weight bias and sensitivity
training, 23
patient history, 69b
PBH. See postbariatric hypoglycemia
PCOS. See polycystic ovary syndrome
PCP. See primary care physician, role of
PDCAAS. See protein digestibility-
corrected amino acid score
PEG. See percutaneous endoscopic
gastrostomy
Penn State University (PSU) equation, 188b
peptide YY (PYY, gut hormone), 13b
percentage of excess weight loss
(%EBL), 14, 15b, 108, 109b
percentage of total body weight loss
(%TBWL), 14, 16b, 110
percutaneous endoscopic gastrostomy
(PEG), 192
person-centered counseling. See
client-centered counseling
PES (problem, etiology, signs/
symptoms) statement, 42b, 71, 72b,
74b, 75b, 100b
phentermine (Adipex-P, Lomaira,
Fastin, Ionamin), 118b
phentermine/topiramate (Qsymia), 118b
physical activity, 68b, 117b, 156b
PN. See parenteral nutrition
polycystic ovary syndrome (PCOS), 166
postbariatric hypoglycemia (PBH), 91,
150–153, 152b–155b, 296
postoperative phase, 47
for adolescents, 136–145, 137b, 139b
enhanced recovery, 48
diet 0–3 months after surgery,
49–57
diet 3–12 months after surgery,
57, 59–61
gastric band adjustments, 64–65,
65b, 227, 282, 283f–285f
lifestyle and behavior changes, 65
micronutrient supplementation
during, 61
nutrition assessment, 66,
66b–70b, 70–71, 80b–81b, 96–98,
99b–100b, 274f–277f
nutrition diagnosis, 71, 71b–75b,
80b, 81b, 98, 99b–100b
nutrition care process case study,
80b–81b
nutrition intervention, 138–144
nutrition intervention/
monitoring/evaluation, 75,
76b–79b, 98–99, 101b

nutrition-related complications
Index

during, 89–92, 91b, 92b
weight loss, 37–38, 62, 63b, 64
postprandial hyperinsulinemic hypoglycemia. See postbariatric hypoglycemia (PBH)
predictive equations, 96–97, 143, 185
pregnancy, 144, 164, 166, 172b–173b
complications, 167–168
Institute of Medicine recommendations for weight gain during, 169b
nutrition assessment, 168–171
nutrition diagnosis, 171, 172b
nutrition intervention, 171, 172b–173b, 174–175
nutrition monitoring/evaluation, 175–176
nutrition therapy goals, 168
timing, after surgery, 166–167
preoperative phase, 30
in adolescents, 131, 131b–132b, 133–135
health insurance requirements, 40–41, 43b, 44, 44b
medical evaluation in, 31, 31b
nutrition assessment, 33–36, 34b, 133–134, 270f–273f
nutrition care process case study, 42b
nutrition intervention, 37–40, 39b, 41b
psychosocial, 32, 33f
role of RDN in, 30
surgical evaluation, 31–32, 32b
weight loss, 135, 136b
primary care physician (PCP), role of, 92–93, 93b, 122, 137, 145
primary obesity surgery endoluminal (POSE) procedure, 214
Project Implicit website, 23
protein digestibility-corrected amino acid score (PDCAAS), 52
protein intake
for adolescents, 140
during full liquid diet phase, 52–53
inadequate, 73b
during nutrition support therapy, 189, 190b
postoperative, 59–60
during pregnancy, 172b
during soft food diet stage, 54–55
protein malnutrition, 303–304
proton pump inhibitors, 305
psychosocial evaluation, preoperative, 32, 33f
PSU. See Penn State University equation
PYY. See peptide YY
RDNs. See registered dietitian nutritionists
reactive hypoglycemia. See postbariatric hypoglycemia (PBH)
REE. See resting energy expenditure
refeeding syndrome, 191–192, 197
registered dietitian nutritionists (RDNs), 20, 22, 47, 107, 131, 136, 137b, 139b
patient-centered care, 22–23
postoperative care and follow-up by, 21f
support groups, 22
Reglan, for delayed gastric emptying, 209
regular texture diet, postoperative, 57, 227
regurgitation, 289, 299, 303
renal transplantation, 160, 164, 165b
reoperations/revisional surgery, 89–90, 119
reproductive and sexual health, 144, 166. See also pregnancy
resistance training, 117b
resting energy expenditure (REE), 142, 143
resting metabolic rate (RMR), 143
Index and nutrition support therapy, 188b
postoperative, 96–97
preoperative assessment of, 36, 36b
revision surgery, 119, 153, 213–214
RMR. See resting metabolic rate
Roux-en-Y gastric bypass (RYGB), 5, 7f, 12, 18
in adolescents, 130
alcohol intake after, 60
complications of, 287–291, 296, 298
diet stages after, 224–227
dumping syndrome after, 296
enteral access after, 192
and food intolerance, 59
fluid intake after, 53
glucose levels after, 94–95
hospital length of stay for, 48
micronutrient deficiencies after,
140, 141, 232, 233b, 236b, 238b,
240b, 241b, 243b, 244b, 248b,
250b, 251b
morbidity/mortality outcomes
of, 16, 18t
pregnancy after, 167–168
postbariatric hypoglycemia after,
91, 151, 153
renal disease after, 160, 164, 165b
weight loss outcomes of, 17t, 62,
63t, 87
weight management after, 88
weight regain after, 110
RYGB. See Roux-en-Y gastric bypass
SADI-S. See single-anastomosis
duodenoleileostomy with sleeve
saline-filled balloon, endoscopically
placed and removed, 214
secondary hyperparathyroidism, 141
selection criteria
for adolescents, 131, 132b
for bariatric surgery, 2–3, 4b
selenium, 252
self-monitoring deficit, 77b
semisolid diet, postoperative, 54–57,
54b, 58b, 226, 274f–275f
sensitivity training, 23
SG. See sleeve gastrectomy
shared decision-making, 317
SIBO. See small intestinal bacteria
overgrowth
single-anastomosis duodo-
ileostomy with sleeve (SADI-S), 5,
10f
diet stages after, 224–227
fluid intake after, 53
glucose levels after, 95
hospital length of stay for, 48
morbidity/mortality outcomes
of, 16, 18t
weight loss outcomes of, 17t, 63t,
87
weight management after, 88
single fluid-filled balloon system, 206,
208
single swallowable fluid-filled balloon,
214
sleep apnea, 18t, 95–96
sleeve gastrectomy (SG), 5, 8f, 18
in adolescents, 130
alcohol intake after, 60
complications of, 287–291, 296
diet stages after, 224–227
dumping syndrome after, 296
fluid intake after, 53
glucose levels after, 94–95
hospital length of stay for, 48, 49
micronutrient deficiencies
after, 140, 141, 232, 233b, 236b,
237b–238b, 240b, 241b, 243b,
244b, 248b, 249b, 251b
morbidity/mortality outcomes
of, 16, 18t
postbariatric hypoglycemia after,
91, 151
pregnancy after, 167–168
weight loss outcomes of, 17t, 62,
Index

63t, 87
weight management after, 88
weight regain after, 111
small intestinal bacteria overgrowth (SIBO), 298
Society of Critical Care Medicine, 188b, 185
soft food texture progression diet, postoperative, 54–57, 54b, 58b, 226
solid food diet, postoperative, 227
solution-focused therapy, 316
stages of change approach, 42b, 314
starches, postoperative intake of, 56
stomach bloating, 301
stool softeners, 295
stricture, 287
sugar intake, postoperative, 51
support groups, 22
support systems, 133, 134–135
surgical evaluation, 31–32, 32
swallowing difficulty, 74b, 76b

TBW. See total body weight
%TBWL. See percentage of total body weight

telehealth, 212
thiamin, 191–192, 250, 251b, 266b
three gas-filled balloon system, 207, 208
TOS. See The Obesity Society
total body weight (TBW), 142
total daily energy expenditure, 142, 143
transoral outlet reduction procedure, 213
transpyloric shuttle device, 214
transtheoretical model (TTM), 314
triglyceride levels, 95
TTM. See transtheoretical model
type 1 diabetes, 153, 155, 156b–159b, 157
type 2 diabetes, 16, 18, 19t, 94–95

UCONN Rudd Center for Food Policy

and Obesity, 222
ulcers, 291
UpToDate, 223
US Department of Agriculture My Plate, 223

vitamin A, 173b, 230b, 245, 245b–246b, 267b
vitamin B1. See thiamin
vitamin B12, 234–235, 235b–236b, 261b–262b, 307
vitamin D, 141, 230b, 242, 242b–243b, 264b
vitamin E, 230b, 247, 247b–249b, 267b
vitamin K, 230b, 247, 249b–250b, 265b
vitamin deficiency/supplementation for adolescents, 140–141
after aspiration therapy, 211
inadequate intake, 71b
in nutrition support therapy, 191–192, 194–195, 196b
postoperative, 61, 67b, 90–91, 225, 226, 227, 228–252, 256, 260
during pregnancy, 173b
preoperative repletion of, 39, 256
vomiting, 288, 299

weight bias, 23
weight loss
excessive, 309
expectations, 88, 108
inadequate, 107, 108
long-term, 109b
outcomes, 14, 15b–16b, 17t, 63t, 87, 308–309
preoperative, 37–38, 62, 63t, 64, 135, 136b
requirements, and insurance, 43b
slow, 308–309
weight maintenance, 88–89, 89b–90b

Weight Management Dietetic Practice Group (WM DPG), 223

weight regain, 88, 107, 108–110
comprehensive nutrition education after, 122
contributors of, 110–111, 112
coordination of nutrition care, 114–115, 116b–118b, 119, 122
nutrition assessment, 120–121
nutrition intervention, 121–122
nutrition monitoring/evaluation, 122
prevention and treatment options for, 111, 113–114, 119
Wernicke’s encephalopathy, 191, 250, 288, 289, 300
whole foods, 57
WM DPG. See Weight Management Dietetic Practice Group
wound infection, 287–288
zinc, 239, 239b–240b, 263b