Contents

List of Boxes, Tables, and Figures ... iv
Frequently Used Terms and Abbreviations .. xii
About the Authors ... xviii
Reviewers .. xx
Preface ... xxi
Acknowledgments ... xxiii
Publisher’s Note on Gender-Inclusive Language .. xxiv
Chapter 1: The Nutrition Care Process .. 1
Chapter 2: Nutrition Screening ... 20
Chapter 3: Food- and Nutrition-Related History .. 40
Chapter 4: Anthropometric Measurements .. 57
Chapter 5: Nutrition Focused Physical Assessment 83
Chapter 6: Biochemical Tests, Medical Data, and Procedures 111
Chapter 7: Client History .. 202
Chapter 8: Nutrient Requirements .. 220
Glossary .. 243
Continuing Professional Education ... 270
Index .. 271
List of Boxes, Tables, and Figures

Boxes

Box 1.1 Examples of Diagnostic Thought Processes .. 8
Box 1.2 Tips for Documenting Nutrition Diagnoses .. 9
Box 1.3 Examples of Improved PES Statements ... 10
Box 1.4 Examples of Correct Nutrition Interventions 12
Box 1.5 Malnutrition Assessment Characteristics Compared With Nutrition Care Process Terminology Nutrition Assessment Domains ... 16
Box 1.6 Case Study Utilizing the Nutrition Care Process 17
Box 2.1 Regulatory Issues Related to Nutrition Screening 21
Box 2.2 Characteristics of Effective Nutrition Screening Tools 21
Box 2.3 Impact of False-Positive and False-Negative Nutrition Screens 22
Box 2.4 Academy of Nutrition and Dietetics Nutrition Screening Definition and Key Considerations ... 23
Box 2.5 Components of the Malnutrition Universal Screening Tool 29
Box 2.6 Components of the Mini Nutritional Assessment–Short Form 32
Box 2.7 Selected Nutrition Assessment Factors and Related Nutrition Diagnoses Following a Positive Nutrition Screen .. 34
Box 3.1 Components of the Food- and Nutrition-Related History 41
Box 3.2 Methods for Determining Food and Nutrient Intake 44
Box 3.3 Food and Nutrient Intake History Questions for Caregivers of Infants and Children ... 47
Box 3.4 Food and Nutrient Intake and History Questions for Adolescents ... 48
Box 3.5 Food and Nutrient Intake and History Questions for Older Adults .. 48
Box 3.6 Food and Nutrient Intake and History Questions for Pregnant Persons ... 49
Box 3.7 Food and Nutrition Administration Components ... 51
Box 3.8 Areas of Assessment for Nutrition-Related Knowledge, Beliefs, and Attitudes .. 52
Box 4.1 Technique for Measuring Standing Height ... 58
Box 4.2 Arm Span Method for Estimating Height .. 59
Box 4.3 Measurement of Knee Height .. 60
Box 4.4 Calculating Body Mass Index .. 63
Box 4.5 Body Mass Index Classification in Adults .. 63
Box 4.6 Calculating Weight Range Within Normal Body Mass Index Range ... 66
Box 4.7 Estimating Ideal Body Weight With the Hamwi Formula ... 67
Box 4.8 Estimating Ideal Body Weight With the Devine Formula ... 67
Box 4.9 Estimating Ideal Body Weight With the Robinson Formula ... 68
Box 4.10 Adjusting Ideal Body Weight for Amputation .. 69
Box 4.11 Assessing Percentage of Weight Change .. 71
Box 4.12 Calculating Total Upper Arm Area, Uncorrected and Corrected Arm Muscle Area, and Mid-Upper Arm Fat Area .. 73
Box 4.13 Arm Muscle and Arm Fat Areas Reflecting Alterations in Total Body Weight .. 79
Box 5.1 Responsibilities of Performing Physical Assessment 84
Box 5.2 Outline for Performing a Physical Examination 85
Box 5.3 Inspection Techniques ... 87
Box 5.4 Palpation Technique .. 88
Box 5.5 Auscultation of Bowel Technique ... 88
Box 5.6 Auscultation of Heart Technique ... 89
Box 5.7 Auscultation of Lungs Technique ... 89
Box 5.8 Percussion Technique ... 90
Box 5.9 Blood Pressure Assessment .. 92
Box 5.10 Radial Pulse Assessment .. 92
Box 5.11 Respiration Assessment ... 93
Box 5.12 Temperature Assessment ... 93
Box 5.13 Selected Neurological Examination Findings 94
Box 5.14 Selected Skin Examination Findings 95
Box 5.15 Selected Nail Examination Findings 97
Box 5.16 Selected Hair Examination Findings 97
Box 5.17 Selected Head Examination Findings 98
Box 5.18 Selected Eye Examination Findings 99
Box 5.19 Selected Nose Examination Findings 101
Box 5.20 Selected Mouth Examination Findings 102
Box 5.21 Selected Abdomen Examination Findings 106
Box 5.22 Selected Musculoskeletal Examination Findings 107
Box 5.23 Dehydration (Fluid Deficit) .. 108
Box 5.24 Overhydration (Fluid Excess) ... 109
Box 6.1 Factors That Decrease or Increase Albumin 114
Box 6.2 Factors That Decrease or Increase Transferrin 115
Box 6.3 Factors That Decrease or Increase Prealbumin 116
List of Boxes, Tables, and Figures

Box 6.4 AACE/ACE and ADA Diabetes Screening Criteria for Asymptomatic Adults... 118
Box 6.5 Interpretation of Glucose Testing and Diagnosis of Prediabetes and Diabetes .. 119
Box 6.6 Screening for and Diagnosis of Gestational Diabetes Mellitus ... 123
Box 6.7 Potential Causes and Symptoms of Hypoglycemia 124
Box 6.8 Potential Causes and Symptoms of Hyperglycemia 125
Box 6.9 Laboratory Abnormalities Often Seen With Diabetic Ketoacidosis and Hyperosmolar, Hyperglycemic State 127
Box 6.10 Evaluation of Hyponatremia When Serum Osmolality Is Low (<280 mOsm/kg H$_2$O)... 130
Box 6.11 Evaluation of Hyponatremia When Serum Osmolality Is Normal or High ... 132
Box 6.12 Hypernatremia and Evaluation of Extracellular Fluid Volume ... 134
Box 6.13 Potential Etiologies and Signs and Symptoms of Hypokalemia ... 136
Box 6.14 Potential Etiologies and Signs and Symptoms of Hyperkalemia ... 138
Box 6.15 Potential Etiologies and Signs and Symptoms of Hypocalcemia ... 140
Box 6.16 Potential Etiologies and Signs and Symptoms of Hypercalcemia ... 142
Box 6.17 Potential Etiologies and Signs and Symptoms of Hypophosphatemia .. 143
Box 6.18 Potential Etiologies and Signs and Symptoms of Hyperphosphatemia .. 145
Box 6.19 Potential Etiologies and Signs and Symptoms of Hypomagnesemia .. 146
Box 6.20 Potential Etiologies and Signs and Symptoms of Hypermagnesemia ... 148
List of Boxes, Tables, and Figures

Box 6.21 Expected Compensation, Causes, and Treatment of Metabolic Acidosis ... 151
Box 6.22 Expected Compensation, Causes, and Treatment of Metabolic Alkalosis ... 152
Box 6.23 Expected Compensation, Causes, and Treatment of Respiratory Acidosis ... 154
Box 6.24 Expected Compensation, Causes, and Treatment of Respiratory Alkalosis .. 155
Box 6.25 Selected Laboratory Values and Hydration Status ... 158
Box 6.26 Most Useful Laboratory Indexes for Diagnosis of Iron-Deficiency Anemia and Anemia of Chronic Disease .. 161
Box 6.27 Most Useful Laboratory Indexes for Diagnosis of Vitamin B12–Deficiency Anemia and Folate-Deficiency Anemia ... 165
Box 6.28 Laboratory Assessment of Vitamin A .. 168
Box 6.29 Laboratory Assessment of Vitamin D ... 169
Box 6.30 Laboratory Assessment of Vitamin E .. 170
Box 6.31 Laboratory Assessment of Vitamin K .. 170
Box 6.32 Laboratory Assessment of Vitamin C .. 171
Box 6.33 Laboratory Assessment of Thiamin (Vitamin B1) ... 172
Box 6.34 Laboratory Assessment of Riboflavin (Vitamin B2) .. 173
Box 6.35 Laboratory Assessment of Niacin (Vitamin B3) .. 174
Box 6.36 Laboratory Assessment of Panothenic Acid (Vitamin B5) ... 174
Box 6.37 Laboratory Assessment of Pyridoxine (Vitamin B6) .. 175
Box 6.38 Laboratory Assessment of Folic Acid .. 175
Box 6.39 Laboratory Assessment of Vitamin B12 .. 177
Box 6.40 Laboratory Assessment of Biotin ... 178
Box 6.41 Laboratory Assessment of Iron ... 178
Box 6.42 Laboratory Assessment of Zinc ... 180
<table>
<thead>
<tr>
<th>Box Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 6.43</td>
<td>Laboratory Assessment of Copper</td>
<td>181</td>
</tr>
<tr>
<td>Box 6.44</td>
<td>Laboratory Assessment of Selenium</td>
<td>182</td>
</tr>
<tr>
<td>Box 6.45</td>
<td>Laboratory Assessment of Chromium</td>
<td>182</td>
</tr>
<tr>
<td>Box 6.46</td>
<td>Laboratory Assessment of Manganese</td>
<td>183</td>
</tr>
<tr>
<td>Box 6.47</td>
<td>Laboratory Assessment of Molybdenum</td>
<td>183</td>
</tr>
<tr>
<td>Box 6.48</td>
<td>Laboratory Assessment of Iodine</td>
<td>184</td>
</tr>
<tr>
<td>Box 6.49</td>
<td>Stool Studies: Laboratory Tests, Frequency of Monitoring, and Rationale</td>
<td>185</td>
</tr>
<tr>
<td>Box 6.50</td>
<td>Chronic Kidney Disease: Laboratory Tests, Frequency of Monitoring, and Rationale</td>
<td>187</td>
</tr>
<tr>
<td>Box 6.51</td>
<td>Risk of Refeeding Syndrome: Laboratory Tests, Frequency of Monitoring, and Rationale</td>
<td>189</td>
</tr>
<tr>
<td>Box 6.52</td>
<td>Essential Fatty Acid Deficiency: Laboratory Tests, Frequency of Monitoring, and Rationale</td>
<td>190</td>
</tr>
<tr>
<td>Box 6.53</td>
<td>Criteria for Clinical Diagnosis of Metabolic Syndrome</td>
<td>190</td>
</tr>
<tr>
<td>Box 6.54</td>
<td>Acute Enteral Nutrition or Parenteral Nutrition: Laboratory Tests and Frequency of Monitoring</td>
<td>192</td>
</tr>
<tr>
<td>Box 6.55</td>
<td>Home Enteral Nutrition: Laboratory Tests and Frequency of Monitoring</td>
<td>194</td>
</tr>
<tr>
<td>Box 6.56</td>
<td>Home Parenteral Nutrition: Laboratory Tests and Frequency of Monitoring</td>
<td>195</td>
</tr>
<tr>
<td>Box 6.57</td>
<td>Metabolic Bone Disease Monitoring in Patients Receiving Long-Term Home Parenteral Nutrition</td>
<td>196</td>
</tr>
<tr>
<td>Box 7.1</td>
<td>Health Literacy Resources</td>
<td>203</td>
</tr>
<tr>
<td>Box 7.2</td>
<td>Selected Components of the Past Medical History</td>
<td>205</td>
</tr>
<tr>
<td>Box 7.3</td>
<td>Potential Nutritional Consequences of Upper Gastrointestinal Surgery</td>
<td>208</td>
</tr>
<tr>
<td>Box 7.4</td>
<td>Potential Nutritional Consequences of Lower Gastrointestinal Surgery</td>
<td>210</td>
</tr>
<tr>
<td>Box 7.5</td>
<td>Potential Drug-Nutrient Interactions That May Require Nutrition-Related Medication Management and Education</td>
<td>210</td>
</tr>
</tbody>
</table>
List of Boxes, Tables, and Figures

Box 7.6 Drug-Induced Nutritional and Metabolic Alterations 215
Box 7.7 Components of a Social History .. 217
Box 8.1 Equations for Estimating Resting Metabolic Rate 222
Box 8.2 Recommendations for Improving Accuracy of Indirect Calorimetry ... 224
Box 8.3 Recommended Equations for Estimating Energy Requirements in Adults Who Are Mechanically Ventilated and Critically Ill ... 227
Box 8.4 Evaluation of Predictive Equations for RMR in Critically Ill Patients ... 227
Box 8.5 Magnesium Supplementation Guidelines 235
Box 8.6 Phosphorus Supplementation Guidelines 236
Box 8.7 Potassium Supplementation Guidelines .. 236
Box 8.8 Sodium Supplementation Guidelines .. 237
Box 8.9 Calculation of Fluid Deficit ... 237
Box 8.10 Estimating Fluid Needs ... 238

Tables

Table 1.1 Clinical Characteristics of Malnutrition in Acute Illness or Injury ... 14
Table 1.2 Clinical Characteristics of Malnutrition in Chronic Illness ... 15
Table 1.3 Clinical Characteristics of Malnutrition in Social or Environmental Circumstances ... 15
Table 4.1 Selected Equations for Estimating Height From Knee Height in Males ... 61
Table 4.2 Selected Equations for Estimating Height From Knee Height in Females ... 61
Table 4.3 Arm Muscle Area Percentiles for Males ... 75
Table 4.4 Arm Muscle Area Percentiles for Females .. 76
List of Boxes, Tables, and Figures

Table 4.5 Arm Fat Area Percentiles for Males .. 77
Table 4.6 Arm Fat Area Percentiles for Females .. 78
Table 8.1 Daily Protein Requirement for Adults .. 231
Table 8.2 Volume and Electrolyte Composition of Selected Body Fluids .. 233
Table 8.3 Electrolyte Concentrations and Osmolality of Common Intravenous Fluids .. 234
Table 8.4 Factors That Affect Fluid Requirements .. 235

Figures

Figure 1.1 Nutrition Care Process Model ... 4
Figure 2.1 Malnutrition Screening Tool ... 27
Figure 2.2 Short Nutritional Assessment Questionnaire 28
Figure 2.3 Nutrition Risk Score-2002 ... 30
Figure 5.1 The abdominal quadrants ... 90
Figure 5.2 Anatomy of the eye ... 99
Figure 5.3 Mouth and facial anatomy ... 102
Figure 5.4 Anatomy of the chest ... 104
Figure 8.1 Using predictive equations to estimate energy requirements 221
Frequently Used Terms and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AACE/ACE</td>
<td>American Association of Clinical Endocrinologists/American College of Endocrinology</td>
</tr>
<tr>
<td>ABG</td>
<td>arterial blood gas</td>
</tr>
<tr>
<td>ABW</td>
<td>adjusted body weight</td>
</tr>
<tr>
<td>ACD</td>
<td>anemia of chronic disease</td>
</tr>
<tr>
<td>ACE</td>
<td>angiotensin-converting enzyme</td>
</tr>
<tr>
<td>ADA</td>
<td>American Diabetes Association</td>
</tr>
<tr>
<td>ADH</td>
<td>antidiuretic hormone</td>
</tr>
<tr>
<td>ADL</td>
<td>activities of daily living</td>
</tr>
<tr>
<td>AFA</td>
<td>arm fat area</td>
</tr>
<tr>
<td>AI</td>
<td>Adequate Intake</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ALP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>AMA</td>
<td>arm muscle area</td>
</tr>
<tr>
<td>AMDR</td>
<td>Acceptable Macronutrient Distribution Range</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>ASPEN</td>
<td>American Society for Parenteral and Enteral Nutrition</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>BIA</td>
<td>bioelectrical impedance analysis</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BMR</td>
<td>basal metabolic rate</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BUN</td>
<td>blood urea nitrogen</td>
</tr>
<tr>
<td>CAM</td>
<td>complementary and alternative medicine</td>
</tr>
<tr>
<td>CBC</td>
<td>complete blood count</td>
</tr>
<tr>
<td>CKD</td>
<td>chronic kidney disease</td>
</tr>
<tr>
<td>CMS</td>
<td>Centers for Medicare & Medicaid Services</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DBW</td>
<td>desired body weight</td>
</tr>
<tr>
<td>DKA</td>
<td>diabetic ketoacidosis</td>
</tr>
<tr>
<td>DNS</td>
<td>Dietitians in Nutrition Support</td>
</tr>
<tr>
<td>DRI</td>
<td>Dietary Reference Intake</td>
</tr>
<tr>
<td>DXA</td>
<td>dual-energy x-ray absorptiometry</td>
</tr>
<tr>
<td>EAL</td>
<td>Evidence Analysis Library</td>
</tr>
<tr>
<td>EAR</td>
<td>Estimated Average Requirement</td>
</tr>
<tr>
<td>ECF</td>
<td>extracellular fluid</td>
</tr>
<tr>
<td>EER</td>
<td>estimated energy requirement</td>
</tr>
<tr>
<td>EFAD</td>
<td>essential fatty acid deficiency</td>
</tr>
<tr>
<td>EHR</td>
<td>electronic health record</td>
</tr>
<tr>
<td>EN</td>
<td>enteral nutrition</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ESR</td>
<td>erythrocyte sedimentation rate</td>
</tr>
<tr>
<td>FFM</td>
<td>fat-free mass</td>
</tr>
<tr>
<td>FNRH</td>
<td>food- and nutrition-related history</td>
</tr>
<tr>
<td>FPG</td>
<td>fasting plasma glucose</td>
</tr>
<tr>
<td>GDH</td>
<td>glutamate dehydrogenase</td>
</tr>
<tr>
<td>GDM</td>
<td>gestational diabetes mellitus</td>
</tr>
<tr>
<td>GERD</td>
<td>gastroesophageal reflux disease</td>
</tr>
<tr>
<td>GGT</td>
<td>gamma-glutamyl transferase</td>
</tr>
<tr>
<td>GI</td>
<td>gastrointestinal</td>
</tr>
<tr>
<td>HbA1c</td>
<td>hemoglobin A1c</td>
</tr>
<tr>
<td>HBE</td>
<td>Harris-Benedict equation</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>Hgb</td>
<td>hemoglobin</td>
</tr>
<tr>
<td>HHS</td>
<td>hyperosmolar hyperglycemic state</td>
</tr>
<tr>
<td>HMG CoA</td>
<td>hydroxymethylglutaryl coenzyme A</td>
</tr>
<tr>
<td>HPN</td>
<td>home parenteral nutrition</td>
</tr>
<tr>
<td>HTN</td>
<td>hypertension</td>
</tr>
<tr>
<td>IBD</td>
<td>inflammatory bowel disease</td>
</tr>
<tr>
<td>IBS</td>
<td>irritable bowel syndrome</td>
</tr>
<tr>
<td>IBW</td>
<td>ideal body weight</td>
</tr>
<tr>
<td>ICF</td>
<td>intracellular fluid</td>
</tr>
<tr>
<td>ICU</td>
<td>intensive care unit</td>
</tr>
<tr>
<td>IDA</td>
<td>iron-deficiency anemia</td>
</tr>
<tr>
<td>IDF</td>
<td>International Diabetes Foundation</td>
</tr>
<tr>
<td>IDNT</td>
<td>International Dietetics and Nutrition Terminology</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>IFG</td>
<td>impaired fasting glucose</td>
</tr>
<tr>
<td>IGT</td>
<td>impaired glucose tolerance</td>
</tr>
<tr>
<td>IJ</td>
<td>Ireton-Jones</td>
</tr>
<tr>
<td>INR</td>
<td>international normalized ratio</td>
</tr>
<tr>
<td>LOS</td>
<td>length of stay</td>
</tr>
<tr>
<td>MAC</td>
<td>midarm circumference</td>
</tr>
<tr>
<td>MAMC</td>
<td>midarm muscle circumference</td>
</tr>
<tr>
<td>MAOI</td>
<td>monoamine oxidase inhibitor</td>
</tr>
<tr>
<td>MCT</td>
<td>medium-chain triglyceride</td>
</tr>
<tr>
<td>MCV</td>
<td>mean corpuscular volume</td>
</tr>
<tr>
<td>MDS</td>
<td>Minimum Data Set</td>
</tr>
<tr>
<td>MMA</td>
<td>methylmalonic acid</td>
</tr>
<tr>
<td>MNA</td>
<td>Mini Nutrition Assessment</td>
</tr>
<tr>
<td>MNA-SF</td>
<td>Mini Nutrition Assessment-Short Form</td>
</tr>
<tr>
<td>MPG</td>
<td>mean plasma glucose</td>
</tr>
<tr>
<td>MSJ</td>
<td>Mifflin-St Jeor</td>
</tr>
<tr>
<td>MST</td>
<td>Malnutrition Screening Tool</td>
</tr>
<tr>
<td>MUST</td>
<td>Malnutrition Universal Screening Tool</td>
</tr>
<tr>
<td>NA</td>
<td>not applicable</td>
</tr>
<tr>
<td>NAFLD</td>
<td>nonalcoholic fatty liver disease</td>
</tr>
<tr>
<td>NANDA</td>
<td>North American Nursing Diagnosis Association</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>NCP</td>
<td>Nutrition Care Process</td>
</tr>
<tr>
<td>NCPM</td>
<td>Nutrition Care Process and Model</td>
</tr>
<tr>
<td>NCPT</td>
<td>Nutrition Care Process Terminology</td>
</tr>
</tbody>
</table>
NDTR nutrition and dietetic technician, registered
NHANES National Health and Nutrition Examination Surveys
NHLBI National Heart, Lung, and Blood Institute
NPO nil per os (nothing by mouth)
NRS Nutrition Risk Score
NSAID nonsteroidal anti-inflammatory drug
OSA obstructive sleep apnea
OTC over the counter
PCOS polycystic ovary syndrome
PES problem, etiology, signs and symptoms
PG plasma glucose
PLP pyridoxal phosphate
PMH past medical history
PN parenteral nutrition
POA power of attorney
POC point of care
PSU Penn State University
PT prothrombin time
PTH parathyroid hormone
QOL quality of life
RBC red blood cells
RDA Recommended Dietary Allowance
RDN registered dietitian nutritionist
RDW red cell distribution width
REE resting energy expenditure
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLQ</td>
<td>right lower quadrant</td>
</tr>
<tr>
<td>RMR</td>
<td>resting metabolic rate</td>
</tr>
<tr>
<td>RQ</td>
<td>respiratory quotient</td>
</tr>
<tr>
<td>SEI</td>
<td>standard error for an individual</td>
</tr>
<tr>
<td>SGA</td>
<td>Subjective Global Assessment</td>
</tr>
<tr>
<td>SIADH</td>
<td>syndrome of inappropriate antidiuretic hormone</td>
</tr>
<tr>
<td>SNAQ</td>
<td>Short Nutrition Assessment Questionnaire</td>
</tr>
<tr>
<td>sTfR</td>
<td>soluble transferrin receptor</td>
</tr>
<tr>
<td>TAA</td>
<td>total upper arm area</td>
</tr>
<tr>
<td>TCA</td>
<td>tricyclic antidepressants</td>
</tr>
<tr>
<td>TfR</td>
<td>transferrin receptor</td>
</tr>
<tr>
<td>TG</td>
<td>triglycerides</td>
</tr>
<tr>
<td>TIBC</td>
<td>total iron-binding capacity</td>
</tr>
<tr>
<td>T_{max}</td>
<td>maximum daily body temperature (degrees Celsius)</td>
</tr>
<tr>
<td>TSAT</td>
<td>transferrin saturation</td>
</tr>
<tr>
<td>TSF</td>
<td>triceps skinfold</td>
</tr>
<tr>
<td>UBW</td>
<td>usual body weight</td>
</tr>
<tr>
<td>UL</td>
<td>Tolerable Upper Intake Level</td>
</tr>
<tr>
<td>US</td>
<td>ultrasound</td>
</tr>
<tr>
<td>V_E</td>
<td>minute ventilation</td>
</tr>
<tr>
<td>WC</td>
<td>waist circumference</td>
</tr>
<tr>
<td>WIC</td>
<td>Special Supplemental Nutrition Program for Women, Infants, and Children</td>
</tr>
</tbody>
</table>
About the Authors

Pamela Charney, PhD, MS, RDN, LDN, FAND, has years of experience in nutrition support in both adult and pediatric care and in a variety of settings ranging from small community hospitals to large, tertiary, teaching medical centers. She has also managed clinical nutrition departments, nutrition support teams, and multidisciplinary clinics for children with special health care needs. She has led groups forming teams or looking to improve team effectiveness. Dr Charney completed her PhD at Rutgers University and has worked as a consultant in the areas of nutrition informatics, evaluation of health care quality, and evaluation of clinical information systems. She has extensive volunteer service to both the Academy of Nutrition and Dietetics and the American Society for Parenteral and Enteral Nutrition, including service on the boards of directors for both organizations. As a charter member of the Standardized Language Committee for the Academy of Nutrition and Dietetics, Dr Charney is considered an expert in nutrition and clinical informatics, nutrition diagnosis, and the use of standardized terminology in clinical care.

Ainsley Malone, MS, RDN, LD, CNSC, FAND, FASPEN, is a nutrition support dietitian at Mt Carmel East Hospital in Columbus, OH, where she is involved in managing nutrition care for patients requiring enteral and parenteral nutrition. In addition, Ms Malone serves as a clinical practice specialist for the American Society for Parenteral and Enteral Nutrition (ASPEN), where she works to support clinical practice activities for the organization. Ms Malone is a certified nutrition support clinician and has given international, national, and local presentations on many aspects of nutrition support practice. In addition to her clinical practice...
activities, Ms Malone has authored multiple peer-reviewed articles and book chapters on nutrition support. Over her career, she has served in many nutrition leadership capacities, including president of ASPEN, and on the Academy of Nutrition and Dietetics Board of Directors.
Reviewers

Sarah Blackburn, MS, RD, LDN
Registered Dietitian, Compass Group USA
Chicago, IL

Susan L. Brantley, MS, RDN, LDN, FAND
Program Director, Department of Family and Consumer Sciences,
Carson-Newman University
Jefferson City, TN

Theresa Cattell, RD, LD, CNSC
Lead Clinical Dietitian, Riverside Methodist Hospital
Columbus, OH

Stephanie Cutrell, MS, RD, LDN, CNSC
Nutrition Support Dietitian, Vidant Medical Center
Greenville, NC

Stephanie Dobak, MS, RD, LDN, CNSC
Clinical Dietitian III, Jefferson Weinberg ALS Center
Philadelphia, PA

Mary E. (Beth) Mills, MS, RD, LDN, CNSC
Clinical Dietitian, RD IV Nutrition Coordinator,
Vanderbilt University Medical Center
Nashville, TN

Christina M. Rollins, MBA, MS, RDN, LDN, FAND, CNSC
Manager, Quality Programs, Option Care Health
Bannockburn, IL

Elizabeth Smith, PhD, RD, LDN
Assistant Professor, Middle Tennessee State University
Murfreesboro, TN

Karen Wiesen, MS, RDN, LDN, FNKF
Inpatient Dietitian Supervisor/Renal Dietitian, Geisinger Medical Center
Danville, PA
Preface

It has been a professional honor to be involved in the *Academy of Nutrition and Dietetics Pocket Guide to Nutrition Assessment*, beginning with publication of the first edition in 2004, now in its fourth edition. Development of the first edition began as a project for the Dietitians in Nutrition Support dietetic practice group. We quickly realized that there was a need for a resource that crossed all areas of clinical dietetics practice and was not limited to nutrition support. Because the first edition of the *Pocket Guide to Nutrition Assessment* was released before the advent of smartphones, tablets, and easy access to online information, we wanted the pocket guide to be a resource that clinicians would have at their fingertips. As the title indicated, the size of the book would literally fit into a lab-coat pocket. Today, clinicians have the option to purchase a slightly larger print copy or an electronic version, making the fourth edition of the *Pocket Guide to Nutrition Assessment* truly flexible, made to meet the needs of busy dietetics professionals.

Before each revision of the *Pocket Guide to Nutrition Assessment*, we reviewed the landscape of dietetics practice. When the Nutrition Care Process (NCP) and standardized dietetics terminology were released, we added a chapter designed to illustrate how nutrition assessment was the critical first step in the NCP. With subsequent updates to the NCP, the outline of the book was revised to ensure that we included the appropriate nutrition assessment domains. We are proud to include in this latest edition a section on malnutrition. While dietitians have always been responsible for diagnosing and treating patients who are malnourished, it is only recently that our standardized terminology provided a way to consistently define the characteristics associated with malnutrition in all patient types in all care settings. Additional updates have been made with each edition to reflect new evidence and address user feedback.
The *Academy of Nutrition and Dietetics Pocket Guide to Nutrition Assessment* has proven to be an invaluable resource for clinicians at all levels of practice. It is especially gratifying to know that it is used in many education programs as an authoritative teaching tool for students and interns. We remain inspired by the ongoing use of this pocket guide and look forward to its continued evolution.

Pamela Charney, PhD, MS, RDN, LDN, FAND
Ainsley Malone, MS, RDN, LD, CNSC, FAND, FASPEN
Acknowledgments

We wish to thank the reviewers of this fourth edition for providing insightful feedback and the students, interns, clinicians, and educators who have shared their appreciation and suggestions over the years, which helps motivate us in creating each new edition.

We gratefully acknowledge all of the past contributors to this pocket guide, including Gail Cresci, PhD, RD; Marion F. Winkler, PhD, RD, CNSD; Trisha Fuhrman, MS, RDN, LD, FAND; Jennifer C. Lefton, MS, RD, LD, CNSC, FAND; Mary J. Marian, DCN, RDN, CSO, FAND; Susan R. Roberts, MS, RDN, LD, CNSC; Mary Russell, MS, RDN, LDN, FAND, FASPEN; Annalynn Skipper, PhD, RD, CNSC, FADA; and Cheryl W. Thompson, PhD, RD, CNSC.
Publisher’s Note on Gender-Inclusive Language

The Academy of Nutrition and Dietetics encourages diversity and inclusion by striving to recognize, respect, and include differences in ability, age, creed, culture, ethnicity, gender, gender identity, political affiliation, race, religion, sexual orientation, size, and socio-economic characteristics in the nutrition and dietetics profession.¹

As part of our commitment to diversity and inclusion, all new and updated editions of professional books and practitioner resources published by the Academy of Nutrition and Dietetics will transition to the use of inclusive language. As appropriate, inclusive language, including person/persons, individual/individuals, or patient/patients, is used to respect and recognize transgender and nonbinary people. Where gender or sex is referred to in this book, it is important to note that gender was not further specified for study participants and specific recommendations for transgender people were not provided.

Existing guidelines for nutrition assessment and interventions rely primarily on gender-specific values and recommendations. As research continues to explore the unique health and nutrition needs of transgender people, nutrition and health practitioners can expand their knowledge and understanding by reviewing available resources that provide guidance for person-centered nutrition care of gender-diverse individuals.²-⁴ The use of inclusive language is consistent with the American Medical Association’s AMA Manual of Style⁵ as well as other health
professional groups and government organizations. The Academy of Nutrition and Dietetics will continue to evolve to adopt consensus best practices related to nutrition care of gender-diverse individuals that maximize inclusivity and improve equitable and evidence-based care.

CHAPTER 1

The Nutrition Care Process

With the introduction of the Nutrition Care Process and Model (NCPM) in 2003, the dietetics profession established a framework for communicating specific interventions unique to dietetics practice. This framework consistently describes the process that registered dietitian nutritionists (RDNs) use to think critically and to make decisions in all care settings.¹⁻⁴ Recent updates allow the NCPM to guide dietetics practice in all care settings.¹⁻² As such, the NCPM helps RDNs clearly and systematically articulate the vital services they provide and demonstrate that they are integral members of the health care team.

Both patients/clients and other health care providers generally recognize that the RDN provides a unique and highly valued service. However, regulatory agencies and third-party payers are focused on outcomes. When evaluating nutrition care, these agencies ask, “Do RDN services positively impact health outcomes or quality of care in ways that can be documented and measured?”⁵ Use of the NCPM helps answer this question by collecting and analyzing data regarding outcomes of nutrition care.
Health Care Processes and Quality of Care

Avedis Donabedian, MD, the “father of health care quality,” noted that health outcomes are a key component of any assessment of care quality. Donabedian also recognized that evaluation of health care quality can be complicated because many outside factors may influence health outcomes. There may be, for example, a lengthy time lag between the time of the intervention and significant improvement in the health outcome of interest. When health outcomes are not as expected or desired, health care administrators are tasked with determining why outcome goals were not achieved. Outcomes can be affected by a particular health care provider’s actions or by how care is provided (ie, the care process). A physician may decide, for example, that a patient with a wound infection needs to receive a specific antibiotic. The infection might fail to improve because the provider ordered the wrong antibiotic (an issue specific to the provider) or because too much time elapsed between entry of the order and the antibiotic being administered (an issue related to the process of care). Having a standardized care process for a profession, such as the NCPM, helps differentiate between provider-specific causes and process-related issues when evaluating health outcomes.

RDNs are not the only health care providers who utilize a care process to guide critical thinking and decision-making in practice. Each health care profession has a care process that allows members to delineate the aspects of care that are unique to their profession.

The Nutrition Care Process and Model Explained

In the original (2008) visual representation of the NCPM, the relationship between the RDN and the patient/client or group is positioned in a circle at the center of the graphic and surrounded by three rings. More recent updates included minor changes to the model. The interior ring depicts the four steps of the Nutrition Care Process (NCP):
• nutrition assessment and reassessment
• nutrition diagnosis
• nutrition intervention
• nutrition monitoring and evaluation

The next ring lists factors intrinsic to the practice of dietetics that affect nutrition care, and the outer ring identifies concepts that define the environment in which nutrition care is provided. Finally, the graphic shows the screening and referral system and the outcomes management system as supporting systems of the NCP (see Figure 1.1). Although not integral parts of the NCP, the screening and referral system and the outcomes management system are closely related and are important to the overall process.

Documenting Care Using the Nutrition Care Process Terminology

Successful implementation of the NCP in clinical practice is supported by the use of standardized dietetics terminology, known as the Nutrition Care Process Terminology (NCPT). Note that the website platform that hosts the list of terms is referred to as eNCPT. Before the development of the NCPT, RDNs would use a variety of words and phrases to describe nutrition problems. In most cases, the words and phrases used were accepted and understood by other RDNs and members of the particular health care team; this is known as local terminology. However, providers in other settings may use different terms with different definitions when describing the same concept. RDNs in one location might use the term “malnutrition,” whereas RDNs in another setting might use the term “undernutrition” when describing a situation in which nutrient intake is less than the requirements for a given length of time. This use of locally developed terminologies may be convenient at the local level but makes it difficult to correctly aggregate and analyze data from multiple care settings over a wider geographical area.

Use of the standardized NCPT ensures consistent use of words and phrases that have the same meaning, regardless of practice setting and
FIGURE 1.1 Nutrition Care Process Model

geographic location. Data from the nutrition assessment may indicate, for example, that intake of food and beverages is not sufficient to meet estimated nutrient requirements. When the RDN uses the NCPT term “inadequate oral intake” to label the problem, the meaning is understood as “oral food/beverage intake is less than established reference standards or recommendations based on physiological needs.”

Nutrition Assessment and the Nutrition Care Process

As noted, nutrition assessment is the first step of the NCP. Nutrition screening is used to identify patients/clients who may have a nutrition diagnosis even though they do not have overt signs or symptoms of a nutrition problem. If the nutrition screen indicates risk for a nutrition problem, the RDN completes a nutrition assessment to correctly diagnose existing nutrition problems (see Chapter 2 for more information on nutritional risk screening).

Nutrition Assessment Components

Nutrition assessment terms are organized into domains (sometimes called categories). Assessment techniques for the domains listed below are discussed in detail in Chapters 3 through 7:

- food/nutrition-related history
- anthropometric measurements
- biochemical data, medical tests, and procedures
- nutrition focused physical findings
- client history

Other assessment domains include:

- Assessment, monitoring, and evaluation tools: This domain addresses the tools used for health or disease status or risk assessment, reassessment, and monitoring and evaluation.
• Etiology: This domain helps communicate the cause or contributing factor of a nutrition diagnosis (problem) identified with evidence gathered in the nutrition assessment.

• Progress evaluation: This domain is used in nutrition reassessment to evaluate progress toward nutrition-related goals and resolution of a nutrition diagnosis.

Collecting and Evaluating Data

A great deal of research in medicine and nursing practice demonstrates that novice, proficient, and expert clinicians differ in the types and amounts of data needed to accurately diagnose health conditions. At this time, there is no reason to think that dietetics practice would differ. RDNs at different levels of practice may gather different amounts or types of data, but the correct diagnosis of the patient’s/client’s nutrition problem remains the goal.

Expert RDNs quickly determine the types and amounts of information needed, efficiently gather and evaluate the information, create a “nutrition differential” (list of potential diagnoses), rule out incorrect diagnoses, and correctly diagnose existing nutrition problems through an iterative process of gathering and evaluating new information as needed. Novice and proficient RDNs are also expected to diagnose nutrition problems correctly but may need additional time and resources. Regardless of the level of practice, RDNs are obligated to refer patients/clients to more experienced practitioners if the situation is outside their area of practice or experience.

What and How Much Data to Collect

Accurate and efficient diagnosis of nutrition problems requires that RDNs determine the types and amounts of nutrition assessment data that should be collected. Although novice and proficient RDNs may need to collect more data than expert RDNs, practitioners at all levels of experience must have an organized approach to data collection.
Nutrition assessment begins with the reason for referral to the RDN and information from the patient history. This information guides selection of the types and amounts of data collected. If the patient is not taking any medications, there would be little reason to conduct a detailed assessment of the diet for possible interactions of food and medication. In contrast, if the patient has a recent history of gastrointestinal (GI) surgery, weight loss, and chemotherapy for colorectal cancer, the RDN will focus on data that will help determine the extent and severity of weight loss and the impact of surgery and chemotherapy on nutrient needs, intake, and metabolism.

After collecting data, the RDN determines whether data fall within established normal limits. If the RDN determines that data are not normal, the clinical importance of the abnormality must be evaluated. The last step before diagnosing nutrition problems is to categorize data. In most cases, an expert RDN completes these final steps quickly. Experience has taught experts how to evaluate nutrition assessment data quickly. Proficient RDNs may complete part of this step efficiently, whereas other parts may require more thought and evaluation. Novice RDNs typically need more time to think and consider each alternative in evaluating assessment data.

Regardless of level of practice, the RDN is responsible for determining whether enough data have been collected to diagnose existing nutrition problems correctly. The collection of insufficient data may lead to an incorrect diagnosis. The collection of extraneous or unnecessary data may also lead to an incorrect diagnosis in addition to increased costs associated with nutrition care.

Nutrition Diagnosis

Nutrition diagnosis is the second step of the NCP. RDNs are responsible for correctly diagnosing nutrition problems. Research in medical and nursing education describes several patterns of thinking used to make decisions in patient care, shown in Box 1.1.8-11 It may be assumed that RDNs would also utilize these patterns to make decisions in patient care.
BOX 1.1 Examples of Diagnostic Thought Processes

Pattern recognition
Decision-making is based on past experience with similar cases
Most successfully used by clinicians with experience

Exhaustive thinking
As much data as possible are gathered and searched for all possible diagnoses
Typically used by novice clinicians

Algorithms
Answers to a series of yes/no questions lead to diagnosis
Most often used by novice and proficient clinicians

Hypothetico-deductive reasoning (Scientific Method)
A list of possible diagnoses is developed and revised as information gathering progresses
Most appropriately used by experienced clinicians

Documenting the Diagnosis

Recommendations for documenting and communicating nutrition diagnoses are often the least understood part of the NCP. The Academy of Nutrition and Dietetics recommends use of PES (problem, etiology, and signs and symptoms) statements when documenting nutrition diagnoses. This recommendation is based on nursing research that led to the creation of the North American Nursing Diagnosis Association (NANDA) nursing terminology.¹²⁻¹⁴

When written correctly, the PES statement can clearly and concisely describe what the RDN diagnosed, why the diagnosis was made, and the key finding that triggered the diagnosis. The statement reads like this:

Problem (the nutrition diagnosis) related to Etiology (the major factor[s] contributing to the nutrition diagnosis) as evidenced by Signs and Symptoms (the key abnormal finding[s] that determined the nutrition diagnosis).
The following example shows a nutrition diagnosis written as a PES statement:

Inadequate oral intake related to chemotherapy-related nausea as evidenced by documented intake that is 25% of estimated requirements.

See Box 1.2 for tips to create clear and concise PES statements that communicate the value of nutrition care to all stakeholders.

Before documenting a nutrition diagnosis, the RDN must be sure that the diagnosis is correct and contextually appropriate. In many cases, more than one diagnosis could be made. It is not unusual, for example, for a patient who has the nutrition diagnosis “overweight/obesity” to also have “excessive oral intake,” “physical inactivity,” “food/nutrition-related knowledge deficit,” or some combination of these diagnosis. RDNs (or their employers) will need to determine if a PES statement must be written for each diagnosis or if the RDN is able to prioritize and document based on the situation. Nevertheless, all nutrition diagnoses must be documented. Lack of documentation implies that the RDN did not correctly diagnose all nutrition problems. In addition,

BOX 1.2 Tips for Documenting Nutrition Diagnoses

The PES (problem, etiology, signs and symptoms) statement must be clear and concise—it must be easily understood by other members of the health care team.

Each PES statement must consist of one nutrition diagnosis, one etiology, and one set of signs and symptoms.

If the patient has more than one nutrition diagnosis, facilities can determine if each diagnosis should have an associated PES statement or if only the primary diagnosis requires documentation using a PES statement. However, each diagnosis should be documented (with or without a PES statement).

Unless local synonyms have been developed and mapped to the Nutrition Care Process Terminology (NCPT), terms used should be from the standardized NCPT.
when nutrition diagnoses are not documented, the implication is that another health care professional would be responsible.

Note: Use of PES statements to document nutrition diagnoses is not required by any regulatory agency. PES statements are one of a number of ways to communicate and document nutrition diagnoses. Each facility should determine how documentation should be accomplished.

Improving PES Statements

Box 1.3 shows examples of PES statements that are rewritten to improve clarity. A brief explanation is also included.

BOX 1.3 Examples of Improved PES Statements

Example 1

Original: Inconsistent carbohydrate intake related to poor diet choices as evidenced by hemoglobin A1c (HbA1c).

Improved: Inconsistent carbohydrate intake related to poor diet choices as evidenced by significant differences in total carbohydrate consumed over 4 days.

Explanation: The original nutrition diagnosis is not supported by the sign or symptom. HbA1c is a laboratory test used to estimate long-term blood glucose control. HbA1c does not measure consistencies in carbohydrate intake. Because the diagnosis is focused on inconsistent carbohydrate intake, the sign or symptom must describe some aspects of carbohydrate intake consistency that can be measured to determine whether the nutrition intervention was effective.

Continued on next page
Nutrition Intervention

Nutrition intervention is the third step in the NCP and involves purposefully planned actions to change a nutrition-related behavior, a risk factor, an environmental condition, or an aspect of a patient’s health status. After correctly diagnosing nutrition problems, the RDN is responsible for planning and ensuring that the appropriate intervention is implemented.

Ideally the intervention is directly related to resolving either the nutrition diagnosis or its etiology. Box 1.4 illustrates this point. Less often, it is directed at relieving the signs and symptoms of the nutrition problem. The interventions may be actions performed by the RDN, recommended to the physician or other health care professionals, or coordinated or delegated to other practitioners.

BOX 1.3 Examples of Improved PES Statements (cont.)

Example 2

Original: Altered gastrointestinal (GI) function related to short bowel syndrome as evidenced by hypoalbuminemia and need for parenteral nutrition.

Improved: Altered GI function related to short bowel syndrome as evidenced by seven watery stools per day for previous 5 days.

Explanation: There is some thought that the etiology of a nutrition diagnosis should never include a medical diagnosis, but in some cases, nutrition diagnoses are directly caused by a medical problem. In this example, altered GI function is a logical consequence of short bowel syndrome. Hypoalbuminemia is not a finding that can be directly related to altered GI function, nor will improvement in albumin levels indicate improvement in GI function. Parenteral nutrition is an intervention, not a sign/symptom of a nutrition diagnosis. Changes in stool output can be considered an indicator of bowel function in patients who have short bowel syndrome. Improvement in stool output following intervention would be seen as a sign that the correct nutrition intervention was implemented.
Nutrition Monitoring and Evaluation

Nutrition monitoring and evaluation is the fourth step of the NCP. In this step, the RDN assesses the patient/client to determine and document whether the intervention had the desired impact on the diagnosis. Because monitoring and evaluation involves reassessment, the standardized terminology for this step is mostly the same as the NCPT for nutrition assessment. The exception is the client history domain, which applies only to assessment (because an intervention could not change history).

During reassessment, the RDN evaluates and communicates whether the nutrition-related problem still exists and the progress made toward resolving the problem. This process involves identifying, in advance, the appropriate reassessment data or nutrition care indicators that will be reviewed and compared with recognized, science-based reference standards, recommendations, client goals, or baseline data.

BOX 1.4 Examples of Correct Nutrition Interventions

<table>
<thead>
<tr>
<th>Nutrition diagnosis (etiology)</th>
<th>Intervention strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity (related to overeating)</td>
<td>Correct: Energy-modified diet: decreased energy diet</td>
</tr>
<tr>
<td></td>
<td>Incorrect: Nutrition education—content: education on low-calorie diet</td>
</tr>
<tr>
<td></td>
<td>Rationale: The correct intervention is related to the cause of the problem, overeating. Education would treat a knowledge deficit.</td>
</tr>
<tr>
<td>Food/nutrition-related knowledge deficit (related to inability to identify lower calorie foods)</td>
<td>Correct: Nutrition education—application: label-reading skills</td>
</tr>
<tr>
<td></td>
<td>Incorrect: Energy-modified diet: decreased energy diet</td>
</tr>
<tr>
<td></td>
<td>Rationale: A knowledge deficit is treated by increasing knowledge.</td>
</tr>
</tbody>
</table>
Malnutrition Diagnosis and Treatment

The adoption of the NCP and standardized terminology aims to improve nutrition care in all areas of dietetics practice, including the care of patients who are malnourished or at risk of malnutrition. It is generally accepted that malnutrition is associated with increased risk for iatrogenic complications, increased length of hospital stay, and increased health care costs. Despite these known negative associations with malnutrition, reimbursement for nutrition intervention has been inconsistent. Third-party payers have only recently acknowledged the link between nutrition interventions and outcomes, supporting the idea that correct diagnosis of malnutrition can improve reimbursement strategies.

Malnutrition is diagnosed using findings from the patient history and physical examination combined with the RDN’s clinical judgment. Consensus statements recommend utilization of certain clinical characteristics for accurate diagnosis of malnutrition. A minimum of two of the following six characteristics is recommended for diagnosis of either severe or nonsevere malnutrition:

- Energy intake: compare recent intake with estimated requirements; report inadequate intake as a percentage of estimated energy requirements over time.
- Interpretation of weight loss: evaluate weight with other clinical findings; assess weight change over time, reported as a percentage of weight lost from baseline.
- Body fat: perform physical assessment to identify loss of subcutaneous fat (eg, orbital, triceps, fat overlying the ribs).
- Muscle mass: perform physical assessment to assess muscle loss (eg, wasting of the temples, clavicles, shoulders, interosseous muscles, scapula, thigh, and calf).
- Fluid accumulation: evaluate generalized or localized fluid accumulation evident on examination (eg, extremities, vulvar/scrotal edema, ascites); determine whether weight loss is masked by edema.
• Reduced grip strength: consult normative standards supplied by the manufacturer of the measurement device.

See Tables 1.1 to 1.3 for clinical characteristics of malnutrition in the contexts of acute illness or injury, chronic illness, and social or environmental circumstances.

Practitioners should be aware that the consensus statements have not been validated and should be considered expert opinion. Use of hand-grip dynamometry is not evidence based and cannot be recommended at this time. NCPT incorporates similar characteristics and can be utilized to document the nutrition diagnosis of malnutrition (undernutrition) and to ensure that the role of the RDN in diagnosis and treatment of malnutrition is described clearly. Box 1.5 compares assessment and documentation of malnutrition characteristics with the associated NCPT domains.2,16

The Subjective Global Assessment (SGA), developed in 1982, uses information gathered from the physician’s history and physical

TABLE 1.1 Clinical Characteristics of Malnutrition in Acute Illness or Injury16

<table>
<thead>
<tr>
<th></th>
<th>Nonsevere (moderate) malnutrition</th>
<th>Severe malnutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy intake</td>
<td><75% of EER for > 7 d</td>
<td>≤50% of EER for ≥ 5 d</td>
</tr>
<tr>
<td>Weight loss</td>
<td>1%–2%</td>
<td>>2%</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>>5%</td>
</tr>
<tr>
<td></td>
<td>7.5%</td>
<td>>7.5%</td>
</tr>
<tr>
<td></td>
<td>1 wk</td>
<td>1 wk</td>
</tr>
<tr>
<td></td>
<td>1 mo</td>
<td>1 mo</td>
</tr>
<tr>
<td></td>
<td>3 mo</td>
<td>3 mo</td>
</tr>
<tr>
<td>Loss of body fat</td>
<td>Mild</td>
<td>Moderate</td>
</tr>
<tr>
<td>Loss of muscle mass</td>
<td>Mild</td>
<td>Moderate</td>
</tr>
<tr>
<td>Fluid accumulation</td>
<td>Mild</td>
<td>Moderate-severe</td>
</tr>
<tr>
<td>Reduced grip strength</td>
<td>NA</td>
<td>Measurably reduced</td>
</tr>
</tbody>
</table>

Abbreviations: EER, estimated energy requirement; NA, not applicable
TABLE 1.2 Clinical Characteristics of Malnutrition in Chronic Illness

<table>
<thead>
<tr>
<th></th>
<th>Nonsevere (moderate) malnutrition</th>
<th>Severe malnutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy intake</td>
<td><75% of EER for ≥1 mo</td>
<td>≤75% of EER for ≥1 mo</td>
</tr>
<tr>
<td>Weight loss</td>
<td>5% 1 mo</td>
<td>>5% 1 mo</td>
</tr>
<tr>
<td></td>
<td>7.5% 3 mo</td>
<td>>7.5% 3 mo</td>
</tr>
<tr>
<td></td>
<td>10% 6 mo</td>
<td>>10% 6 mo</td>
</tr>
<tr>
<td></td>
<td>20% 1 y</td>
<td>>20% 1 y</td>
</tr>
<tr>
<td>Loss of body fat</td>
<td>Mild</td>
<td>Severe</td>
</tr>
<tr>
<td>Loss of muscle mass</td>
<td>Mild</td>
<td>Severe</td>
</tr>
<tr>
<td>Fluid accumulation</td>
<td>Mild</td>
<td>Severe</td>
</tr>
<tr>
<td>Reduced grip strength</td>
<td>NA</td>
<td>Measurably reduced</td>
</tr>
</tbody>
</table>

Abbreviations: EER, estimated energy requirement; NA, not applicable

TABLE 1.3 Clinical Characteristics of Malnutrition in Social or Environmental Circumstances

<table>
<thead>
<tr>
<th></th>
<th>Nonsevere (moderate) malnutrition</th>
<th>Severe malnutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy intake</td>
<td><75% of EER for ≥3 mo</td>
<td>≤50% of EER for ≥1 mo</td>
</tr>
<tr>
<td>Weight loss</td>
<td>5% 1 mo</td>
<td>>5% 1 mo</td>
</tr>
<tr>
<td></td>
<td>7.5% 3 mo</td>
<td>>7.5% 3 mo</td>
</tr>
<tr>
<td></td>
<td>10% 6 mo</td>
<td>>10% 6 mo</td>
</tr>
<tr>
<td></td>
<td>20% 1 y</td>
<td>>20% 1 y</td>
</tr>
<tr>
<td>Loss of body fat</td>
<td>Mild</td>
<td>Severe</td>
</tr>
<tr>
<td>Loss of muscle mass</td>
<td>Mild</td>
<td>Severe</td>
</tr>
<tr>
<td>Fluid accumulation</td>
<td>Mild</td>
<td>Severe</td>
</tr>
<tr>
<td>Reduced grip strength</td>
<td>NA</td>
<td>Measurably reduced</td>
</tr>
</tbody>
</table>

Abbreviations: EER, estimated energy requirement; NA, not applicable
The Nutrition Care Process

examination to diagnose malnutrition. The following components are included in the SGA:

- weight and weight changes
- appetite and intake
- GI symptoms
- functional status
- physical exam for fat and muscle wasting

The SGA has been validated and, as such, is the gold standard with which the consensus statement assessment tool would be compared. The important role of the RDN in correctly diagnosing malnutrition cannot be overstated. See Box 1.6 for a case study.

BOX 1.5 Malnutrition Assessment Characteristics Compared With Nutrition Care Process Terminology Nutrition Assessment Domains

<table>
<thead>
<tr>
<th>Malnutrition assessment characteristic</th>
<th>Nutrition care process terminology domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>History and clinical diagnosis</td>
<td>Client history</td>
</tr>
<tr>
<td>Physical exam/clinical signs</td>
<td>Nutrition focused physical findings</td>
</tr>
<tr>
<td>Anthropometric data</td>
<td>Anthropometric measurements</td>
</tr>
<tr>
<td>Laboratory data</td>
<td>Biochemical data, medical tests, and procedures</td>
</tr>
<tr>
<td>Food or nutrient intake</td>
<td>Food- or nutrition-related history</td>
</tr>
<tr>
<td>Functional assessment</td>
<td>Nutrition focused physical findings</td>
</tr>
</tbody>
</table>
BOX 1.6 Case Study Utilizing the Nutrition Care Process

A 26-year-old woman was referred by her primary care provider to the outpatient registered dietitian nutritionist (RDN) for “treatment of malnutrition.” On arrival at clinic, the patient was weighed and measured. She weighed 105 lb (47.7 kg) and was 66 in tall (167.6 cm). Her body mass index was 16.9. A review of the patient’s medical record revealed that she weighed between 104 lb and 108 lb over the past 4 years. The medical and surgical history was unremarkable. The nutrition focused physical examination revealed only that the patient appeared to be very thin and had some mild temporal fat loss. The patient worked full time as an administrative assistant and had a part-time job (two to three evenings per week) as a musician. On nights that she worked, she would skip dinner and eat packaged cheese and crackers in the car and typically did not get home until after midnight. She stated that she “caught up on her sleep” by sleeping in until 1 PM or 2 PM on weekends. Otherwise her food and nutrition history revealed that her intake was adequate for weight maintenance 4 d/wk with possible sub-optimal intake only on days that she worked in the evenings and on weekends. The patient stated that she would like to gain 4 to 5 lb but was not sure how to do that. This meeting was her first with an RDN.

Based on the information gathered during the nutrition assessment, the RDN made the following diagnoses:

- Underweight related to diet and lifestyle, as evidenced by documented weight history and patient desire to gain weight
- Inadequate oral intake related to lack of time for several meals per week, as evidenced by diet recall
- Food- and nutrition-related knowledge deficit related to diet for weight gain, as evidenced by patient report of no prior nutrition education

The RDN did not diagnose malnutrition in this patient. The patient’s weight had been stable for the past several years. There was also no indication that the patient would not be able to maintain or gain weight given implementation of the appropriate nutrition intervention.

Continued on next page
The RDN provided nutrition education about methods to increase the energy content of meals and snacks. The patient also agreed to attempt to pack a high-energy snack to eat in the car on the way to her second job and to leave a snack at her bedside on weekends. She would also set an alarm for midmorning on weekends so she could consume the snack and go back to sleep. The patient returned for follow-up 3 months later and had gained 2 lb. She stopped eating the morning snack on weekends but added a midafternoon snack at work and continued to bring a high-energy snack to eat in the car. She was pleased with her progress and agreed to return in 3 months for a weight check. The RDN monitored the patient’s weight and food intake to adjust future nutrition education plans.

At this point, if the patient had not gained weight, the RDN would reassess the patient and possibly diagnose malnutrition based on additional information gathered.

This case highlights the role of the RDN in ensuring that malnutrition is correctly diagnosed. Whereas other members of the health care team looked only at a snapshot of the patient’s weight before diagnosing incorrectly, the RDN carefully evaluated all five components of the nutrition assessment. The RDN also kept the patient at the center of the care process by incorporating the patient’s experiences and plans when deciding on an appropriate nutrition intervention.

References

Index

Page numbers followed by \textit{f} indicate figures, page number followed by \textit{t} indicates tables, and page numbers followed by \textit{b} indicate boxes.

abdomen
- examination, 105, 106\textit{b}
- quadrants of, 90\textit{f}

Academy of Nutrition and Dietetics, 8, 221, 222, 238

Critical Illness Evidence-Based Nutrition Practice Guideline, 223

Evidence Analysis Library, 26, 224, 225, 229

Evidence-Based Nutrition Practice Guideline for Spinal Cord Injury, 68

Measuring Resting Metabolic Rate in the Critically Ill Guideline, 224

nutrition screening definition, 22, 23

nutrition screening position paper, 24

acceptable macronutrient distribution ranges, 240

access to food, 41\textit{b}, 53

acid–base assessment, 149

acid–base disorders
- evaluation and treatment of, 150
 - metabolic acidosis, 151\textit{b}–152\textit{b}
 - metabolic alkalosis, 152\textit{b}–153\textit{b}
 - respiratory acidosis, 154\textit{b}–155\textit{b}
 - respiratory alkalosis, 155\textit{b}–156\textit{b}
- types of, 149

acute care
- collection of food and nutrient intake data, 44

enteral/parenteral nutrition monitoring, 191, 192\textit{b}–193\textit{b}

measurement of body composition in, 72

nutrition screening tools for, 25

retrieval of historical information in, 203

acute illness/injury
- clinical characteristics of malnutrition in, 14\textit{t}
- interpretation of BMI in acutely ill patients, 64

acute-phase response, 112, 114, 161

Acute Physiologic Assessment and Chronic Health Evaluation (APACHE II), 113

ADA. See American Diabetes Association

adequate intake, 239

adjustable gastric banding, 209\textit{b}

adolescents
- food and nutrient intake and history questions for, 48\textit{b}
 - HbA1c goals for, 127

AFA. See arm fat area

Agency for Healthcare Research and Quality (AHRQ), 203\textit{b}

AHRQ. See Agency for Healthcare Research and Quality

alanine aminotransferase (ALT), 193\textit{b}, 195\textit{b}

albumin, 113, 114\textit{b}, 159\textit{b}, 187\textit{b}, 194\textit{b}, 195\textit{b}
Index

algorithms, 8b
alkaline phosphatase (ALP), 169b, 193b, 195b
ALP. See alkaline phosphatase
alpha-tocopherol, 170b
ALT. See alanine aminotransferase
aluminum, 188b
ambulatory care
nutrition screening tools for, 25
retrieval of historical information in, 203
American Association of Clinical Endocrinologists (AACE), 118b–119b, 122
American College of Endocrinology.
See American Association of Clinical Endocrinologists (AACE)
American Diabetes Association (ADA), 117, 121
diabetes screening criteria for asymptomatic adults, 118b–119b
American Society for Parenteral and Enteral Nutrition (ASPEN), 229
amiodarone, 210b
amlodipine, 211b
amputation, adjustments to IBW for, 69, 69b–70b
anemia. See nutritional anemias
anemia of chronic disease (ACD), 161, 161b–164b
angiotensin-converting enzyme inhibitors, 210b
anthropometric measurements, 57
body composition, 70–79, 73b–74b, 75t–78t, 79b
body mass index, 62–65, 63b
height measurement/estimation, 57–60, 58b, 59b–60b, 61t
ideal body weight, 65–69, 66b, 67b–68b, 69b–70b
interpretation of body weight, 70, 71b
weight measurement, 60, 62
antianxiety/sedative hypnotics, 210b
anticoagulants interaction with nutrients, 211b
nutrition screening for, 36
antidepressants, 211b
APACHE II. See Acute Physiologic Assessment and Chronic Health Evaluation
appetite, 215b
arm fat area (AFA)
interpretation of, 74
mid-upper, 72, 73b–74b
percentiles for females, 78t
percentiles for males, 77t
reflecting alterations in total body weight, 79b
arm muscle area (AMA), 72
corrected, 73b
interpretation of, 74
percentiles for females, 76t
percentiles for males, 75t
reflecting alterations in total body weight, 79b
uncorrected, 73b
arm span method, 59, 59b
ascorbic acid, 171b
aspartate aminotransferase (AST), 193b, 195b
AST. See aspartate aminotransferase
atomic absorption spectrophotometry, 183b
atorvastatin, 212b
auscultation techniques, 87, 88b–89b
bariatric surgery, 209b
beam and balance scales, 62
bed scales, 62
behaviors, nutrition, 41b, 53
benazepril, 210b
benzodiazepines, 211b
BIA. See bioelectrical impedance analysis
bicarbonate, 187b, 192b, 195b
bile acid sequestrants, 211b
bilirubin, 193b, 195b
bioelectrical impedance analysis (BIA), 64, 79
biotin, 178
blood glucose, 192b, 194b, 195b
diabetic ketoacidosis and
hyperosmolar hyperglycemic state, 127, 127b–128b
evaluation of, 123
fasting, 191b
monitoring long-term glucose control, 123, 126–127
prediabetes and diabetes, 117–122, 118b–120b
blood pressure (BP), 191b
assessment, 92b
blood urea nitrogen (BUN), 157, 158b, 192b, 194b, 195b
BMI. See body mass index
body composition, 70–71
assessment tools, 79
calculations, 72, 73b–74b
derived parameters, 72
interpretation of AMA and AFA, 74, 75t–78t, 79b
measurement, indirect measures for, 72
body fluids, volume and electrolyte composition of, 233t
body frame size adjustments, and ideal body weight, 66
body mass index (BMI), 36, 62
and body fat, 64
classification, in adults, 63b
data, in electronic health records, 64 equations, 63, 63b
ideal body weight based on, 65–66, 66b
interpretation of, 63–65
and morbidity/mortality, 65
body surface area method, for fluid needs estimation, 238b
bowel, auscultation of, 88b–89b
BP. See blood pressure
Bumex, 213b
BUN. See blood urea nitrogen
BUN-to-creatinine ratio, 158b
calcium, 139, 187b, 194b, 195b, 196b
hypercalcemia, 141, 142b
hypocalcemia, 139, 140b–141b
ionized, 192b
loss, 216b
calcium-channel blockers, 211b
carbamazepine, 211b
caregivers of infants/children, food and nutrient intake and history questions for, 47b
CBC. See complete blood count
Centers for Disease Control and Prevention, 64, 203b
Centers for Medicare & Medicaid Services (CMS), 21
ceruloplasmin, 181b
chest
anatomy of, 104f
examination of, 104–105
chief complaint, 205b
chloride, 187b, 192b, 194b, 195b
chlorothiazide, 214b
chlordialdone, 214b
cholesteraamine, 211b
chromium, 182b
chronic illness, clinical characteristics of malnutrition in, 15t
chronic kidney disease (CKD), 187b–188b
chronological age method, for fluid needs estimation, 238b
cilostazol, 211b
ciprofloxacian, 212b
CKD. See chronic kidney disease
cleviprex, 213b
client history, 12, 202
family medical/health history, 203–204, 207b
medication history, 207b, 208, 210b–216b
past medical history, 203–204, 205b–207b
Index

personal history, 202–203
psychiatric history, 206b
social history, 217, 217b–218b
surgical history, 206b, 208, 208b–210b
clofibrate, 212b
clopiipramine, 21b
Clostridium difficile toxin, 186b
CMS. See Centers for Medicare & Medicaid Services
cobalamin, 165b, 177b
colesevelam, 211b
colestipol, 211b
colon, 210b
colonic interposition, 208b
complementary/alternative medicine use, 41b, 51–52
complete blood count (CBC), 187b, 194b, 195b
with differential, 193b
computed tomography (CT), 79
constipation, 215b
copper, 181b
creatinine, 183b, 187b, 192b, 194b, 195b
CT. See computed tomography
cyclosporine, 212b
data collection, 6
food and nutrient intake, 44, 45b–46b, 46
with differential, 193b
types and amounts of data, 6–7
data evaluation, 6
dehydration, 108b, 157
desirable body weight. See ideal body weight (IBW)
DETERMINE Checklist, 25
Devine formula, 66, 67b
dexamethasone, 214b
diabetes mellitus, 117
gestational, 122, 123b
insulin therapy and blood glucose targets, 120–122
interpretation of glucose testing, 119b–120b
screening and diagnosis, 117, 118b–120b
diabetic ketoacidosis, 127, 127b–128b
diagnostic procedures, history of, 207b
diarrhea, 185b–186b, 215b
diazepam, 210b
Dietary Reference Intakes (DRIs), 239–240
dietary supplement use, history of, 207b
1,25-dihydroxyvitamin D, 169b
distal small bowel, 210b
documentation of diagnosis, 8–10, 9b
Donabedian, Avedis, 2
DRIs. See Dietary Reference Intakes
drug-induced nutritional and metabolic alterations, 215b–216b
drug-nutrient interactions, 210b–214b
dry mouth, 215b
dual-energy x-ray absorptiometry (DXA), 79, 196b
durable power of attorney, 54
DXA. See dual-energy x-ray absorptiometry
EFAD. See essential fatty acid deficiency
EGR-AC. See erythrocyte glutathione reductase activity coefficient
EHRs. See electronic health records
electrolyte assessment
calcium, 139, 140b–141b, 141, 142b
magnesium, 145–146, 146b–147b, 148, 148b
phosphorus, 143, 143b–144b, 145, 145b
potassium, 136, 136b–137b, 138, 138b–139b
sodium, 128–129, 130b–132b, 133–134, 134b–135b
electrolyte management, 232, 233t–235t, 235b–237b, 238, 238b
electronic health records (EHRs), 24, 35, 62, 64
electronic scales, 62
emesis, 215b
emission spectroscopy, 183b
enalapril, 210b

energy requirements
for critically ill patients, 223–226, 224b, 227b–228b
methods for determining, 220–222, 221f
for noncritically ill patients, 222b

enteral nutrition monitoring, 191
in acute care settings, 191, 192b–193b
home enteral nutrition, 194, 194b

erythrocyte copper, 181b
erythrocyte folate, 176b
erythrocyte glutathione reductase activity coefficient (EGR-AC), 173b
erythrocyte manganese, 183b
erythrocyte transketolase activity (ETKA), 172b
esophagus, resection/replacement of, 208b
essential fatty acid deficiency (EFAD), 190b
estimated average requirement, 239

euglycemia, 121

exhaustive thinking, 8b
extracellular fluid (ECF), 130b–131b, 134, 134b–135b, 141, 157

eye
anatomy of, 99f
examination, 98, 99b–100b

face, anatomy of, 102f
false-negative result, 21, 22b
false-positive result, 21, 22b
family medical/health history, 203–204, 207b
fasting lipid profile, 188b

fat
body fat, and BMI, 64
malabsorption, 186b, 216b
metabolism, altered, 216b
fat-free mass (FFM), 70–71
fecal fat test, 186b
fecal leukocytes, 185b

fecal occult blood test, 186b
felodipine, 211b
fenofibrate, 212b
ferritin, 161b, 179b, 187b, 196b
FFM. See fat-free mass
fiber intake, 40–41
fibric acid derivatives, 212b
fidaxomicin, 186b
fluid balance method, 238b
fluid(s)
deficit, calculation of, 237b
dehydration, 108b
intake, 40–42
intravenous, electrolyte concentrations and osmolality of, 234t
needs, estimation of, 238, 238b
overhydration, 109b
requirements, factors that affect, 235t
volume and electrolyte composition of body fluids, 233t
fluoroquinolones, 212b
fluvastatin, 212b
FNRH. See food and nutrition-related history
folate-deficiency (megaloblastic) anemias, 164, 165b–166b
folate/folic acid, 173b–176b, 177b
red blood cell, 166b, 176b
serum, 166b, 176b
food and nutrient administration, 41b, 50, 51b
food and nutrient intake, 41b, 43–44
data collection methods, 44, 45b–46b, 46
questions for adolescents, 48b
questions for caregivers of infants/children, 47b
questions for older adults, 48b–49b
questions for pregnant women, 49b–50b
Food and Nutrition Board, Institute of Medicine, 239
food and nutrition-related history (FNRH), 40
 access to food and food/nutrition-related supplies, 41b, 53
 behaviors, 41b, 53
 components of, 41b, 43–54
 food and nutrient administration, 41b, 50, 51b
 food and nutrient intake, 41b, 43–44, 44b–46b, 46, 47b–50b
 functional capacity and physical activity, 41b, 53
 guidelines for conducting, 42–43
 knowledge/beliefs/attitudes, nutrition-related, 41b, 52, 52b
 medication and complementary/alternative medicine use, 41b, 51–52
 nutrition-related patient/client-centered measures, 41b, 54
 special circumstances, 54
 using information for nutrition diagnosis, 40–42
 using information for nutrition monitoring/evaluation, 42
 food diary/records, 45b–46b
 food frequency questionnaire, 44, 45b
 food/nutrition-related supplies, 41b, 53
 fosinopril, 210b
 free-water deficit, 133
 functional capacity, 41b, 53
 gamma-glutamyl transferase (GGT), 195b
 gastric pull-up, 208b
 gastrointestinal failure, 54
 GDM. See gestational diabetes mellitus
gemfibrozil, 212b
gestational diabetes mellitus (GDM), 122, 123b
 GGT. See gamma-glutamyl transferase
 glucose. See blood glucose
 griseofulvin, 212b
 hair examination, 96, 97b
 Harms formula, 66, 67b
 Harris-Benedict equation (HBE), 222b, 227–228b
 Harvard School of Public Health, 203b
 HbA1c. See hemoglobin A1c
 HDL cholesterol, 190b
 head examination, 97, 98b
 health care processes, 2
 health care proxy, 54
 health literacy resources, 203b
 health outcomes, 2
 heart, auscultation of, 89b
 heart failure
 and fluid intake, 42
 high risk of readmission for, 36
 height, 57–58
 arm span method, 59, 59b
 estimation methods, 59–60
 and ethnicity/gender, 61t
 knee height, 59–60, 60b, 61t
 measurement methods, 58–59
 recumbent length, 58–59
 standing height, 58, 58b
 hematocrit, 158b
 hemoglobin, 187b
 hemoglobin A1c (HbA1c), 117, 120b, 123
 and diagnosis of diabetes, 126
 goals, 126–127
 and MPG, correlations between, 126
 testing, frequency of, 126
 hepatic transport protein assessment, 112
 acute-phase response, 112
 albumin, 113, 114b
 prealbumin, 116, 116b
 transferrin, 114–115, 115b
 HMG CoA–reductase inhibitors, 212b
 home enteral nutrition, monitoring of, 194, 194b
 home parenteral nutrition (HPN)
 long-term, metabolic bone disease
 monitoring in patients on, 196b
 monitoring, 194–195, 195b–196b
 homocysteine, 166b, 176b, 177b
Index

HPN. See home parenteral nutrition
hydration, 156–157
hypervolemia, 157
hypovolemia, 157
laboratory values associated with,

158b–160b
status, 108, 108b–109b
hydrochlorothiazide, 214b
3-hydroxisovalerate acid, 178b
25-hydroxyvitamin D, 169b, 188b, 196b
hypercalcemia, 141, 142b
hyperglycemia, 120, 121, 123, 125b, 215b
hyperkalemia, 138, 138b–139b
hyperlipidemia, 216b
hypermagnesemia, 148, 148b
hypernatremia, 128, 133–134, 134b–135b
hyperosmolar hyperglycemic state,

127, 127b–128b
hyperosmolar hyponatremia, 132b
hyperphosphatemia, 145, 145b
hypervolemia, 157
hypervolemic hypotonic
hyponatremia, 131b, 135b
hypoalbuminemia, 113
hypocalcemia, 139, 140b–141b, 146
hypoglycemia, 121, 123, 216b
and HbA1c goals, 126–127
potential causes and symptoms of,

124b
hypokalemia, 136, 136b–137b, 146
hypomagnesemia, 146, 146b–147b
hyponatremia, 128, 129, 130b–132b
hypophosphatemia, 143, 143b–144b, 189b
hypothetico-deductive reasoning, 8b
hypoventilation, 149
hypovolemia, 157
hypovolemic hypotonic
hyponatremia, 130b, 134b

IBW. See ideal body weight
ICF. See intracellular fluid
ideal body weight (IBW), 65
actuarial tables, 65
adjustments for amputation, 69, 69b–70b
adjustments for obesity, 68
adjustments for spinal cord injury, 68–69
based on BMI, 65–66, 66b
Devine formula, 66, 67b
Hamwi formula, 66, 67b
Robinson formula, 66, 68b
immune function parameters, 117
immunosuppressants, 212b
indinavir, 214b
indirect calorimetry, 220, 223–225, 224b
inspection techniques, 87, 87b
Institute of Medicine, 239–240
insulin therapy, 120–122
interviews, patient, 42–43
intracellular fluid (ICF), 136, 157
iodine, 184b
iron, 162b, 196b
deficiency, 114
laboratory assessment of, 178b–179b
iron-deficiency anemia, 161, 161b–164b
iso-osmolar hyponatremia, 132b
isovolemic hypotonic hyponatremia,

130b–131b, 134b–135b
isradipine, 211b
knee height method, 59–60, 60b, 61t
knowledge/beliefs/attitudes, nutrition-related, 41b, 52, 52b
laboratory assessment
disease-specific laboratory testing
for adults, 184–185, 185b–191b
and hydration, 158b–160b
for nutritional anemias, 161b–164b, 165b–166b
nutrition screening using, 33–34
of vitamins, minerals, and trace
elements, 167, 168b–184b
Lasix, 213b
leukocyte ascorbic acid, 171b

SAMPLE PAGE
Not for Print
or Resale
Index

levodopa, 212
levofloxacin, 212
levothyroxine, 213
lipid-based medications, 213
lisinopril, 210
long-term care, nutrition screening tools for, 25
loop diuretics, 213
lovastatin, 212
lower gastrointestinal surgery, nutritional consequences of, 210
lungs, auscultation of, 89
MAC. See midarm circumference
magnesium, 139, 145, 189, 192, 194, 195, 196
drug-induced alterations of, 216
hypermagnesemia, 148, 148
hypomagnesemia, 146, 146–147
supplementation guidelines, 235
malnutrition
assessment characteristics, 16
case study, 17–18
clinical characteristics of, 14–15
diagnosis and treatment, 13–14, 16
sample screening tools, 26–34
Malnutrition Screening Tool (MST), 26, 27
Malnutrition Universal Screening Tool (MUST), 28, 29
manganese, 183
MCV. See mean corpuscular volume
MDS. See Minimum Data Set
mean corpuscular volume (MCV), 163, 165
mean plasma glucose (MPG), 123, 126
medical records, 42, 50, 87, 203
medical therapies, history of, 207
medication(s)
drug-induced nutritional and metabolic alterations, 215–216
drug-nutrient interactions, 210–214
history, 207, 208, 210–216
use, 41, 51–52
MedlinePlus, 203
megaloblastic anemia, 164, 165–166
metabolic acid-base disorders, 149
metabolic acidosis, 151–152
metabolic alkalosis, 152–153
metabolic bone disease, monitoring in patients on long-term HPN, 196
metabolic compensation, 149, 150
metabolic syndrome, 185, 190
metformin, 213
methadone, 213
methotrexate, 213
methylmalonic acid (MMA), 165, 177
Metropolitan Life Insurance tables, 65, 68
midarm circumference (MAC), 72
midarm muscle circumference, 72
Mifflin-St Jeor equation, 221
Mini Nutritional Assessment-Short Form (MNA-SF), 32, 32–33
mL/kg method, 238
MMA. See methylmalonic acid
moexipril, 210
molybdenum, 183
monoamine oxidase inhibitors (MAOIs), 213
mouth
anatomy, 102
examination, 101, 102–103
MPG. See mean plasma glucose
MST. See Malnutrition Screening Tool
musculoskeletal examination, 106, 107
nail examination, 96, 97
National Institutes of Health, 203
nausea, 215
NCPM. See Nutrition Care Process and Model
NCPT. See Nutrition Care Process Terminology
neck, examination, 104–105
neurological examination, 93, 94b
niacin, 174b
nifedipine, 211b
nimodipine, 211b
nisoldipine, 211b
nitrendipine, 211b
nitrogen balance, 230
North American Nursing Diagnosis Association (NANDA), 8
nutrient intake record (calorie count), 44, 46b
nutrient requirements, 220
energy requirements for critically ill patients, 223–226, 224b, 227b–228b
energy requirements for non-critically ill patients, 222, 222b
fluid and electrolyte management, 232, 233t–235t, 235b–237b, 238, 238b
hypocaloric, high-protein regimen, 229–230
methods for determining energy requirements, 220–222
protein requirements, 230–231, 231b–232b
vitamins and minerals, 239–240
nutritional anemias, 160
anemia of chronic disease, 161, 161b–164b
folate-deficiency (megaloblastic) anemias, 164, 165b–166b
iron-deficiency anemia, 161, 161b–164b
vitamin B12-deficiency anemia, 164, 165b–166b
nutrition assessment, 5
data collection, 6–7
data evaluation, 6
domains, 5–6
following a positive nutrition screen, 34b
Nutrition Care Process (NCP)
 case study, 17b–18b
 health care processes and quality of care, 2
 malnutrition diagnosis and treatment, 13–14, 14t–15t, 16, 16b
 nutrition assessment, 5–7
 nutrition diagnosis, 7–10
 nutrition intervention, 11, 12b
 nutrition monitoring and evaluation, 12
 steps of, 2–3
Nutrition Care Process and Model (NCPM), 1, 2–3, 4f
Nutrition Care Process Terminology (NCPT), 3, 5, 14, 40, 202
 domains, 16b
nutrition diagnosis, 7
 documentation, 8–10, 9b
 following a positive nutrition screen, 34b
 thought process, 8b
 using food and nutrition-related history for, 40–42
nutrition intervention, 11, 12b
nutrition monitoring and evaluation, 12
 using food and nutrition-related history for, 42
nutrition reassessment, 12
nutrition-related patient/client-centered measures, 41b, 54
nutrition-related patient history, 205b
Nutrition Risk Score-2002 (NRS-2002), 30, 30f–31f; 32
nutrition screening, 5, 20–22
 for anticoagulant therapy, 36
definition of, 22, 23b
effective, characteristics of, 21b
false-positive/false-negative results, 21, 22b
for high risk of readmission for heart failure, 36
key considerations, 23b
location of, 23
Index

for obesity, 36
people who perform, 24
positive, steps after, 34
for pressure injuries, 35
programs, tips for implementation of, 25–26
regulatory issues related to, 21b
sample malnutrition screening tools, 26–34
tools, selection and implementation of, 24–26
using laboratory data, 33–34

obesity
adjustments to IBW for, 68
hypocaloric, high-protein regimen for patients with, 229–230
nutrition screening for, 36
older adults, 55
and dehydration, 133
food and nutrient intake and history questions for, 48b–49b
interpretation of BMI in, 65
oral health history, 207b
ova and parasites, 185b
overhydration, 109b

palpation techniques, 87, 88b
pancreatic-oduodenectomy, 209b
pantothenic acid, 174b
paralysis, 68–69
parathyroid hormone (PTH), 169b, 188b, 196b
parenteral nutrition monitoring, 191
in acute care settings, 191, 192b–193b
home parenteral nutrition, 194–195, 195b–196b
past medical history (PMH), 203–204, 205b–207b
pattern recognition, 8b
pediatric populations
HbA1c goals for, 127
interpretation of BMI in, 64
Penn State University (PSU) equation, 221f, 227b, 228b
percussion technique, 87, 90b
perindopril, 210b
personal history, 202–203
PES (problem, etiology, and signs and symptoms) statements, 8–9, 9b, 10, 10b–11b
phenytoin, 213b
phosphate, 169b
phosphorus, 187b, 189b, 192b, 194b, 195b, 196b
drug-induced alterations of, 216b
hyperphosphatemia, 145, 145b
hypophosphatemia, 143, 143b–144b
supplementation guidelines, 236b
phylloquinone, 171b
physical activity, 41b, 53
physical examination, 83–84
abdomen, 105, 106b
areas of focus, 85, 85b–86b
auscultation techniques, 87, 88b–89b
eye, 98, 99b–100b
findings, interpretation of, 91
hair, 96, 97b
head, 97, 98b
hydration status, 108, 108b–109b
inspection techniques, 87, 87b
mouth, 101, 102b–103b
musculoskeletal examination, 106, 107b
nails, 96, 97b
neck and chest, 104–105
neurological examination, 93, 94b
nose, 100, 101b
palpation techniques, 87, 88b
percussion techniques, 87, 90b
quadrants of abdomen, 90f
responsibilities of clinicians, 84f, 84b
signs of health, 91
skin, 94–95, 95b–96b
vital signs, 92, 92b–3b
platelet-aggregation inhibitors, 211b
PMH. See past medical history
POC. See point-of-care testing
point-of-care (POC) testing, 121–122
potassium, 136, 187b, 189b, 192b, 194b, 195b
drug-induced alterations of, 216b
hyperkalemia, 138, 138b–139b
hypokalemia, 136, 136b–137b
supplementation guidelines, 236b–237b
pravastatin, 212b
prealbumin, 116, 116b, 187b
prediabetes, 117, 119b–120b
predictive equations, 221–222, 221f, 226
for energy requirement estimation
in mechanically ventilated critically ill patients, 227b
for RMR in critically ill patients, 227b–228b
prednisone, 214b
pregnant women
food and nutrient intake and history questions for, 49b–50b
gestational diabetes mellitus, 122, 123b
pressure injuries, nutrition screening for, 35
probiotics, 186b
propofol, 213b
protease inhibitors, 214b
protein(s)
hypocaloric, high-protein regimen
requirements, 230–231, 231b–232b
serum, and nutrition screening, 33–34
prothrombin time (PT), 171b, 193b, 195b
proximal small bowel, 210b
psychiatric history, 206b
PT. See prothrombin time
PTH. See parathyroid hormone
pyridoxal 5’-phosphate, 175b
pyridoxine, 175b
QOL. See quality of life
quality, health care, 2
quality of life (QOL), 54
quinapril, 210b
quinidine gluconate, 214b
radial pulse assessment, 92b
ramipril, 210b
RDA. See Recommended Dietary Allowance
RDNs. See registered dietitian nutritionists
RDW. See red cell distribution width
Recommended Dietary Allowance (RDA), 238b, 239
recumbent length, 58–59
red blood cell folate, 166b, 176b
red cell distribution width (RDW), 163b
refeeding syndrome, 189b
registered dietitian nutritionists (RDNs), 1, 2, 24, 83, 167
levels of practice, and data collection, 6
patient interviews, 42–43
relationship with patients/clients, 2
regulatory agencies, 1
reimbursement, 13, 36
respiration assessment, 93b
respiratory acid-base disorders, 149
respiratory acidosis, 150, 154b–155b
respiratory alkalosis, 155b–156b
respiratory quotient (RQ), 225
interpretation of, 225–226
resting metabolic rate (RMR), 222
interpretation of, 225–226
retinol, 168b
retinol-binding protein, 168b
riboflavin, 173b
RMR. See resting metabolic rate
Robinson formula, 66, 68b
rosuvastatin, 212b
Roux-en-Y gastric bypass, 209b
RQ. See respiratory quotient
saquinavir, 214b
screening. See nutrition screening
selenium, 182b
sertraline, 211b
serum lactate, 172b
serum osmolality, 129, 130b–132b, 133, 159b
SGA. See Subjective Global Assessment
Short Nutrition Assessment
Questionnaire (SNAQ), 25, 27, 28f
sildenafil, 214b
simvastatin, 212b
sirolimus, 212b
Skin Condition Finder, 95
skin examination, 94–95, 95b–96b
SNAQ. See Short Nutrition Assessment
Questionnaire
social/environmental circumstances,
clinical characteristics of
malnutrition in, 15t
social history, 217, 217b–218b
sodium, 159b, 187b, 192b, 194b, 195b
drug-induced alterations of, 216b
hypernatremia, 128, 133–134, 134b–135b
hyponatremia, 128, 129, 130b–132b
supplementation guidelines, 237b
soluble transferrin receptor, 164b
spinal cord injury, adjustments to IBW
for, 68–69
spring scales, 62
stadiometer, 58
standing height, 58, 58b
steatorrhea, 186b
stool culture, 186b
stool studies, 185b–186b
Subjective Global Assessment (SGA),
14, 16
subtotal gastrectomy, 209b
Sudan stain test, 186b
surgical history, 206b, 208, 208b–210b
surrogates, for food and nutrition-
related history, 54
TAA. See total upper arm area
tacrolimus, 212b
taste, altered, 215b
temperature assessment, 93b
tetracycline, 214b
TfR. See transferrin receptor
thiamin, 172b
thiazide-like diuretics, 214b
thiazides, 214b
third-party payers, 1, 13
TIBC. See total iron-binding capacity
tolerable upper intake level (UL), 240
total gastrectomy, 209b
total iron-binding capacity (TIBC), 162b
total upper arm area (TAA), 73b
trandolapril, 210b
transferrin, 114–115, 115b
transferrin receptor (TfR), 179b
transferrin saturation, 163b, 187b
transthyretin, 116
triázolam, 211b
triiceps skinfold (TSF), 72
triene-to-tetraene ratio, 190b, 196b
triglycerides (TG), 190b, 193b, 195b
TSF. See triceps skinfold
24-hour recall, 44, 44b–45b
type 1 diabetes, 117, 121
type 2 diabetes, 117
UL. See tolerable upper intake level
ultrasound (US), 79
upper gastrointestinal surgery,
nutritional consequences of,
208b–209b
urine osmolality, 160b
urine-specific gravity, 159b
US. See ultrasound
vagotomy, 209b
vancomycin, 186b
verapamil, 211b
vertical sleeve gastrectomy, 209b
vital signs, assessment of, 92, 92b–3b
vitamin A, 168b
vitamin B1, 172b
vitamin B2, 173b
vitamin B3, 174b
vitamin B5, 174b
vitamin B6, 175b
vitamin B12, 165b, 176b, 177b
vitamin B12-deficiency anemia, 164, 165b–166b
vitamin C, 171b
vitamin D, 169b
vitamin E, 170b
vitamin K, 170b–171b
vitamin K antagonist therapy, 36
vitamin requirements, 239–240
waist circumference (WC), 185, 190b
warfarin, 211b
WC. See waist circumference
weight
 change, percentage of, 71b
 ideal body weight, 65–69, 66b, 67b–68b, 69b–70b
 interpretation of, 70
 measurement of, 60, 62
 scales, calibration of, 62
 scales, types of, 62
Whipple procedure. See pancreaticoduodenectomy
World Health Organization, 59, 64
zinc, 180b
zinc superoxide dismutase, 181b