Contents

List of Boxes and Tables .. iv

Frequently Used Terms/Abbreviations .. xi

Reviewers .. xv

Preface ... xvii

Chapter 1: Nutrition Care Process .. 1

Chapter 2: Nutrition Risk Screening .. 7

Chapter 3: Anthropometric Measurements 27

Chapter 4: Client History ... 98

Chapter 5: Food and Nutrition History .. 113

Chapter 6: Nutrition-Focused Physical Examination 144

Chapter 7: Biochemical Data, Medical Tests,
and Medical Procedures .. 157

Chapter 8: Energy and Nutrient Requirements 177

Continuing Professional Education .. 219

Index ... 220
List of Boxes and Tables

Boxes

Box 1.1 Steps in the Nutrition Care Process .. 2
Box 1.2 Step 1: Nutrition Assessment and Reassessment 3
Box 2.1 Typical Parameters That May Be Used to Determine Nutritional Risk... 10
Box 2.2 American Society for Parenteral and Enteral Nutrition (ASPEN) Standards for Nutrition Support: Hospitalized Pediatric Patients ..14
Box 3.1 Resources for Determining Anthropometric z Scores...38
Box 4.1 Components of a Pediatric Nutrition-Oriented Medical History ...99
Box 4.2 Drug-Nutrient Interactions ...101
Box 4.3 Family-Related Social and Behavioral Factors Affecting Nutritional Status...109
Box 5.1 Key Elements of a Pediatric Diet History 114
Box 5.2 Types of Diet Histories ... 116
Box 5.3 Physical Abilities, Eating Skills, Hunger and Fullness Cues, and Appropriate Food Textures for Infants and Toddlers .. 125
Box 5.4 Typical Feeding/Eating Behaviors for Age 128
Box 5.5 Age-Specific Feeding/Eating Patterns to Evaluate in the Dietary Assessment .. 130
Box 5.6 Choose MyPlate Food Groups 134
Box 6.1 Skin Examination ... 145
Box 6.2 Hair and Nail Examination ... 147
Box 6.3 Head and Neck Examination .. 148
Box 6.4 Eye Examination .. 149
Box 6.5 Nose, Mouth/Lip, and Tongue Examination 150
Box 6.6 Gum and Teeth Examination ... 151
Box 6.7 Cardiovascular System Examination 152
Box 6.8 Gastrointestinal Examination 153
Box 6.9 Musculoskeletal Examination 153
Box 6.10 Neurological System Examination 155
Box 6.11 Sexual Maturation Examination 155
Box 7.1 Medical Tests and Procedures Used in Pediatric Nutrition Assessment .. 171
Box 8.1 Alternative Methods of Estimating Daily Energy Requirements Based on Health Condition ... 197

Box 8.2 Nutritional Risks in Children That May Benefit from Supplementation .. 204

Tables

Table 2.1 Pediatric Nutrition Risk Screening Tools ... 15

Table 3.1 Centers for Disease Control and Prevention and World Health Organization Age-Specific Growth Charts .. 32

Table 3.2 Mean Rates of Weight Gain for Boys Aged 0 to 24 Months ... 47

Table 3.3 Mean Rates of Weight Gain for Boys Aged 2 to 20 Years ... 47

Table 3.4 Mean Rates of Weight Gain for Girls Aged 0 to 24 Months ... 48

Table 3.5 Mean Rates of Weight Gain for Girls Aged 2 to 20 Years ... 49

Table 3.6 Mean Rates of Stature Gain for Boys Aged 0 to 24 Months ... 56

Table 3.7 Mean Rates of Stature Gain for Boys Aged 2 to 18 Years ... 56

Table 3.8 Mean Rates of Stature Gain for Girls Aged 0 to 24 Months ... 57
Table 3.9 Mean Rates of Stature Gain for Girls Aged 2 to 18 Years

Table 3.10 Interpretation of Body Mass Index-for-Age

Table 3.11 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Boys Aged 1.5 to 4.9 Years

Table 3.12 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Boys Aged 5 to 7.9 Years

Table 3.13 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Boys Aged 8 to 10.9 Years

Table 3.14 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Boys Aged 11 to 13.9 Years

Table 3.15 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Boys Aged 14 to 16.9 Years

Table 3.16 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Boys Aged 17 to 19.9 Years

Table 3.17 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Girls Aged 1.5 to 4.9 Years

Table 3.18 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Girls Aged 5 to 7.9 Years

Table 3.19 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Girls Aged 8 to 10.9 Years

Table 3.20 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Girls Aged 11 to 13.9 Years

Table 3.21 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Girls Aged 14 to 16.9 Years

Table 3.22 Smoothed Percentiles for Triceps Skinfold-for-Age, Millimeters: Girls Aged 17 to 19.9 Years
Table 3.23 World Health Organization or United Nations Children’s Fund Weight-for-Height Diagnostic Criteria for Severe Acute Malnutrition in Children Aged 6 to 60 Months ... 81

Table 3.24 Criteria to Identify Pediatric Malnutrition with a Single Data Point .. 87

Table 3.25 Criteria to Identify Pediatric Malnutrition with Two or More Data Points................................. 88

Table 4.1 Windows of Achievement for Six Gross Motor Development Milestones.. 107

Table 4.2 Sexual Maturity Rating... 108

Table 5.1 Energy and Protein Content of Foods Commonly Consumed by Infants and Children120

Table 5.2 Typical Portion Sizes and Daily Intake for Children, Aged 0 to 36 Months .. 131

Table 5.3 US Department of Agriculture Estimated Daily Calorie Requirements for Boys and Girls 135

Table 5.4 MyPlate Plan: 1,000 to 1,600 kcal/d 137

Table 5.5 MyPlate Plan: 1,800 to 2,400 kcal/d 138

Table 5.6 MyPlate Daily Checklist: 2,600 to 2,800 kcal/d .. 139

Table 5.7 Portion Sizes for Children Aged 2 to 12 Years .. 140

Table 7.1 Selected Serum Protein Tests and Normal Values ... 159

Table 7.2 Selected Urine Protein Tests and Normal Values .. 160
Table 7.3 Laboratory Tests and Normal Values for Selected Vitamins...161

Table 7.4 Laboratory Tests and Normal Values for Selected Minerals..163

Table 8.1 Dietary Reference Intakes, Males and Females Aged 0 to 8 Years...181

Table 8.2 Dietary Reference Intakes, Males Aged 9 to 30 Years...184

Table 8.3 Dietary Reference Intakes, Females Aged 9 to 30 Years...187

Table 8.4 Dietary Reference Intakes, Pregnant and Lactating Females Aged 14 to 30 Years.................................190

Table 8.5 Estimated Energy Requirements for Infants and Young Children...194

Table 8.6 Estimated Energy Requirements for Boys and Girls Aged 3 to 18 Years..195

Table 8.7 Physical Activity Coefficients for Normal-Weight Boys and Girls Aged 3 to 18 Years.........................196

Table 8.8 World Health Organization Equations for Estimating Resting Energy Expenditures..........................199

Table 8.9 Schofield Equations for Estimating Resting Energy Expenditures..200

Table 8.10 Stress Factors and Effects on Energy Requirements..200

Table 8.11 Total Energy Expenditure for Weight Maintenance in Obese Boys and Girls Aged 3 to 18 Years..............201
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.12</td>
<td>Physical Activity Coefficients for Obese Boys and Girls Aged 3 to 18 Years</td>
<td>201</td>
</tr>
<tr>
<td>8.13</td>
<td>Basal Metabolic Rate Prediction Equations for Obese Children and Adolescents, Aged 7 to 18 Years</td>
<td>202</td>
</tr>
<tr>
<td>8.14</td>
<td>Estimated Energy Requirements for Pregnant and Lactating Adolescents</td>
<td>203</td>
</tr>
<tr>
<td>8.15</td>
<td>Clinical Recommendations for the Use of Dietary Fluoride Supplements</td>
<td>211</td>
</tr>
</tbody>
</table>
Frequently Used Terms/Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAP</td>
<td>American Academy of Pediatrics</td>
</tr>
<tr>
<td>AI</td>
<td>adequate intake</td>
</tr>
<tr>
<td>AMA</td>
<td>American Medical Association</td>
</tr>
<tr>
<td>ASPEN</td>
<td>American Society for Parenteral and Enteral Nutrition</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BMR</td>
<td>basal metabolic rate</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CPE</td>
<td>Continuing Professional Education</td>
</tr>
<tr>
<td>DRI</td>
<td>Dietary Reference Intake</td>
</tr>
<tr>
<td>EAR</td>
<td>Estimated Average Requirement</td>
</tr>
<tr>
<td>EER</td>
<td>Estimated Energy Requirement</td>
</tr>
</tbody>
</table>
eNCPT electronic Nutrition Care Process Terminology
Hct hematocrit
Hgb hemoglobin
INTER-GROWTH-21st International Fetal and Newborn Growth Consortium for the 21st Century
MCV mean cell volume
MUAC mid–upper arm circumference
NCP Nutrition Care Process
NFPE nutrition-focused physical examination
NHANES National Health and Nutrition Examination Survey
NRST-CF Nutrition Risk Screening Tool for Children and Adolescents with Cystic Fibrosis
NutriSTEP Nutrition Screening for Toddlers and Preschoolers
OFC occipital frontal circumference
PAL physical activity level
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PeDiSMART</td>
<td>Pediatric Digital Scaled Malnutrition Risk Screening Tool</td>
</tr>
<tr>
<td>PNST</td>
<td>Pediatric Nutrition Screening Tool</td>
</tr>
<tr>
<td>PYMS</td>
<td>Paediatric Yorkhill Malnutrition Score</td>
</tr>
<tr>
<td>RDA</td>
<td>Recommended Dietary Allowance</td>
</tr>
<tr>
<td>REE</td>
<td>Resting Energy Expenditure</td>
</tr>
<tr>
<td>RQ</td>
<td>respiratory quotient</td>
</tr>
<tr>
<td>SAM</td>
<td>severe acute malnutrition</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>SDs</td>
<td>standard deviations</td>
</tr>
<tr>
<td>SGNA</td>
<td>Subjective Global Nutritional Assessment</td>
</tr>
<tr>
<td>STAMP</td>
<td>Screening Tool for the Assessment of Malnutrition in Paediatrics</td>
</tr>
<tr>
<td>STRONGkids</td>
<td>Screening Tool for Risk on Nutritional Status and Growth</td>
</tr>
<tr>
<td>TEE</td>
<td>total energy expenditure</td>
</tr>
<tr>
<td>TIBC</td>
<td>total iron-binding capacity</td>
</tr>
<tr>
<td>TSF</td>
<td>triceps skinfold</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>UL</td>
<td>Tolerable Upper Intake Level</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Fund</td>
</tr>
<tr>
<td>USDA</td>
<td>US Department of Agriculture</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WIC</td>
<td>Women, Infants, and Children</td>
</tr>
</tbody>
</table>
Reviewers

Aida Miles, MMSc, RDN, LD, LMNT, FAND
Director, Coordinated MPH Nutrition Program, University of Minnesota, School of Public Health
Minneapolis, MN

Nancy Nevin-Folino, RDN, LD, FADA, FAND
Neonatal Nutrition Support Specialist, Dayton Children’s Hospital
Dayton, OH

Beth Ogata, MS, RDN, CSP
Lecturer, University of Washington, Center on Human Development and Disability
Seattle, WA

Sandra Robbins, RDN, CSP
Nutritionist, Pediatric Lung and Allergy Center
Fairfax, VA
Bonnie A. Spear, PhD, RDN, FAND
Professor Pediatrics Emerita, University of Alabama—Birmingham
Birmingham, AL

Jodi Wolff, MS, RDN, LD, FAND, FAACPDM
Pediatric Dietitian, Rainbow Babies Children’s Hospital
Solon, OH
Preface

The challenge of accurately assessing and diagnosing pediatric nutrition problems is endlessly fascinating to clinicians and is critical to helping families care for their children. While some children present with a constellation of concerns that seem familiar and easy to address, there is virtually always a unique twist that makes each child’s nutrition problem an individual puzzle to put together. Assessing each domain of nutrition information is necessary to bring the puzzle into focus.

Understanding of how to assess, interpret, and communicate each piece of the assessment puzzle continues to evolve. This evolution sometimes leads us to circle back again to our most basic ways of defining and describing nutrition risk. Over the past decade, experts have revisited the concept of pediatric malnutrition, resulting in new ways of assessing and classifying it. This third edition of the *Pocket Guide to Pediatric Nutrition Assessment* includes updated recommendations based on the latest expert guidelines published by the Academy of Nutrition and Dietetics, the American Society
for Parenteral and Enteral Nutrition (ASPEN), and the World Health Organization (WHO). The list below provides a brief overview of what is new in the third edition:

Chapter 1:
- Updated and expanded description of nutrition assessment as the first step of the Nutrition Care Process

Chapter 2:
- Academy of Nutrition and Dietetics/ASPEN indicators of pediatric malnutrition (undernutrition)
- Summary and discussion of validated pediatric malnutrition risk screening tools

Chapter 3:
- Updated and expanded list of specialized growth charts
- Discussion of z scores
- Table of resources for determining anthropometric z scores
- Expanded discussion of mid–upper arm circumference and addition of percentile tables
- WHO and UNICEF definition of severe acute malnutrition
- Academy of Nutrition and Dietetics/ASPEN criteria to identify and classify degree of malnutrition
Chapter 5:
- Updated baby foods
- Updated tables of amounts needed from each food group to meet calorie levels recommended by the US Department of Health and Human Services and the US Department of Agriculture in the *2015–2020 Dietary Guidelines for Americans* and MyPlate

Chapter 6:
- Updated and expanded information on pediatric nutrition–focused physical exam

Chapter 8:
- Inclusion of key Dietary Reference Intake (DRI) values
- Sample calculation for estimating energy needs using the Estimated Energy Requirement (EER) equations
- Basal metabolic rate (BMR) prediction equations for obese children and adolescents
- Updated references for nutrients of special concern

The goal is for this pocket guide to support practitioners in putting together the pieces of the nutrition assessment puzzle for each child assessed, using the most current tools and language.

Beth L. Leonberg, MS, MA, RDN, CSP, LDN, FAND
BOX 1.2 Step 1: Nutrition Assessment and Reassessment (cont.)

Data sources/tools for assessment
- Screening or referral form
- Client interview
- Medical or health records
- Consultation with other caregivers, including family members
- Community-based surveys and focus groups
- Statistical reports, administrative data, and epidemiologic studies

Types of data collected
- Food- and nutrition-related history
- Anthropometric measurements
- Biochemical data, medical tests, and procedures
- Nutrition-focused physical examination findings
- Client history

Nutrition assessment components
- Review data collected for factors that affect nutrition and health status.
- Cluster individual data to identify at least one nutrition diagnosis as described in diagnosis reference sheets.
- Identify accepted standards, recommendations, and/or goals by which data will be compared.
BOX 1.2 Step 1: Nutrition Assessment and Reassessment (cont.)

Determination for continuation of care

If upon completion of an initial nutrition assessment or reassessment it is determined that the problem cannot be modified by further nutrition care, discharge or discontinuation from this episode of nutrition care may be appropriate.

References

The purpose of nutrition screening is to identify individuals at risk for nutrition problems who will benefit from a more complete assessment and development of a nutrition care plan via the Nutrition Care Process (NCP).\(^1\) Although not part of the NCP, screening is nevertheless important to the process because it identifies clients who would benefit from nutrition care or medical nutrition therapy. Within the pediatric population, use of a standard screening tool was shown to improve compliance with measurement of anthropometrics on admission to the hospital.\(^2\)

Certain characteristics should be taken into consideration when developing and conducting a nutrition risk screen. Screening should be cost-effective, involve minimal risk for the person being screened, use readily available data, and use the fewest resources necessary
to accomplish the goal. Effective screening must also be accurate, which is defined by:

- sensitivity—the ability to identify all those at risk;
- specificity—the ability to identify all those not at risk; and
- positive and negative predictive value—that is, a high likelihood that a subject who is identified as “at risk” actually is at risk and a low likelihood that a subject who is not identified as at risk truly is at risk.3

Finally, screening is effective only if it can lead to interventions that increase the likelihood of positive health outcomes.

Screening Parameters and Assignment of Risk

Screening for nutrition risk involves the comparison of a set of parameters, such as anthropometric indicators, dietary intake, or biochemical data, against standards that identify nutrition risk. Five key areas for assessment when identifying pediatric malnutrition were defined by Mehta and colleagues in a landmark article published in 2013.4 The five domains include the following: anthropometric variables, growth, chronicity of malnutrition, etiology of malnutrition and etiology of pathogenesis, and impact of malnutrition on functional status.
Index

Page number followed by \(t \) indicates table, and page number followed by \(b \) indicates box.

3-day food record, 95\(b \)–96\(b \)
3-methyl histidine, 136\(t \)
7-day food record, 96\(b \)
24-hour recall, 95\(b \)
2010 Dietary Guidelines for Americans, 111. See also US Department of Agriculture (USDA)

Academy of Nutrition and Dietetics
 Nutrition Care Process (NCP), 1, 1\(b \)–2\(b \), 7
 Pediatric Nutrition Care Manual, 13
 Pocket Guide to Children with Special Health Care and Nutritional Needs, 105

acute illness, and estimated energy requirements, 154, 155\(t \)–156\(t \)
Adequate Intake (AI), 148
age, 22–23
albumin, 135, 135\(t \)–136\(t \)
American Academy of Pediatrics, 20, 141
American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.), 11–12, 12b
anemia, 140–142
anthropometric measurements, 3b, 8b. See also growth; specific types of measurement
antibiotics, 85b
anticonvulsants, 85b
anti-GERD medications, 86b
antipsychotics, 87b
arm circumference. See mid-arm circumference
attention deficit/hyperactivity disorder, 86b–87b

baby foods, energy/protein content of, 98t
beverages, energy/protein content of, 101t
biochemical data, 3b, 9b, 134–135. See also laboratory assessment; specific types of data
birth history, 84
Bitot’s spots, 125t
blood urea nitrogen, 135t
body mass index (BMI), 41–43, 43t, 44
botanical treatments, 87–88
brain growth, 25
breastfeeding, 94b, 102b, 106b, 108b
breast milk
 energy/protein content of, 98t
 portion sizes of, 110t
breath hydrogen test, 143b
Bright Futures Nutrition, 13
bulk agents/laxatives, 86b
calcium, 138, 164
calibrated beam balance scale, 26
calorie count, history, 97

calorie requirements. See energy/calorie requirements

cardiac medications, 85

cardiovascular examination, 129

catch-up growth, 23, 28, 38

Centers for Disease Control and Prevention (CDC), growth charts,
 16–19, 18, 34, 42, 44

cerebral palsy, 153

client history, 3, 8–9. See also development; family/community
 environment; medical/health history

codes, for nutrition diagnosis, 4

cognitive development, 89

complementary/alternative therapies, 87–88

constipation, 130

convulsions, 132

corticosteroids, 86

creatinine, 136

creatinine/height index, 136

cultural heritage, 92

cystic fibrosis, 154

dairy foods
 calcium content of, 164
 energy/protein content of, 99
 intake patterns/portion sizes, 111, 114–118

degree of wasting, 43–44

delayed wound healing, 122

dental caries, 128, 163

dermatitis, 122
development
 cognitive, 89
 motor, 88, 88t
 sexual, 89–90, 89t–90t, 133t
diarrhea, 130t
Dietary Guidelines for Americans, 111. See also US Department of Agriculture (USDA)
Dietary Reference Intakes (DRIs), 101, 147
 definitions for, 148
 vs individual intakes, 149
 for infants, 148–149
dietetic technician, registered (DTR), 10
diet history, 93–101, 94b
 evaluation of, 97–101, 98t–101t
 methods for obtaining, 94–95, 95b–97b
diet interview, 95b
diuretics, 85b
Down syndrome, children with
 energy requirements for, 152b
 growth charts for, 20
drug-nutrient interactions, 85b–87b
dual energy X-ray absorptiometry (DEXA), 143b

eating/feeding behaviors, 105, 106b–109b. See also food intake patterns
edema, 122t
electrolytes, 142–143
electronic plotting, of growth data, 21–22
electronic scale, 26
emesis, history of, 84
energy content, of common foods, 98t–101t
energy/calorie requirements
Estimated Energy Requirements (EERs), 150, 151t–152t
estimates for children with acute illnesses, 154, 155t–156t
estimates for children with chronic health conditions, 152b–154b
estimates for overweight/obese children, 156t–157t
estimates for pregnant and lactating adolescents, 157t
indirect calorimetry vs predictive equations, 150
USDA MyPlate estimates, 113t–117t
Epi Info anthropometry software, 19
equations. See formulas/equations
Estimated Average Requirement (EAR), 148
Estimated Energy Requirement (EER), 148, 150–151, 151t, 157t
eye examination, 125t
failure to thrive, 41, 153b
family/community environment, 91b, 91–92
fats
energy/protein content of, 100t
intake patterns, 114t–117t
fecal elastase –1 test, 143b
fecal fat test, 144b
feeding skills, 102–105, 102b–105b
females
Estimated Energy Requirements (EERs) for, 151t
mean rates of stature gain, 36t–37t
mid-arm circumference in, 76t–77t
physical activity coefficients (PAs) for, 152t, 157t
pubertal development in, 89t–90t, 90
resting energy expenditures (REEs) for, 155t
subscapular skinfold-for-age in, 68t–73t
Total Energy Expenditure (TEE) for, 156t
triceps skinfold-for-age in, 56t–61t
USDA estimated calorie requirements, 113t–114t
velocity of weight gain in, 30t–31t
Fenton growth charts, 19
fibronectin, 136t
fluoridated toothpaste, 164
fluoride supplementation, 162–164, 163t
fluorosis, 164
folate deficiency, 142
folic acid, 137t
food frequency history, 96b
food intake patterns, 111, 111b–112b, 114t–117t
 for infants/toddlers, 109, 110t
 for older children, 117, 118t
food/nutrition-related history, 3b, 9b, 93. See also diet history
food textures, age-appropriate, 102b–105b
formulas/equations
 for BMI, 42
 for coefficient of fat absorption, 144b
 for degree of stunting, 39
 for EERs, 151t, 153b
 for PAs, 152t
 for percentage of IBW, 44
 for percent weight change, 31
 for prematurity correction, 23
 for REEs, 155t
fruits
 energy/protein content of, 99t
 intake patterns/portion sizes, 111b, 114t–118t
fullness cues, 102b–105b
gastrointestinal examination, 130t
genetics
 head size affected by, 25
 stature affected by, 38–39
grains
 energy/protein content of, 98t
 intake patterns/portion sizes, 111b, 114t–118t
growth, 15
growth charts, 15–22, 27
 CDC, 16–19, 18t, 34, 42, 44
 for children with Down syndrome, 20
 disease-specific, 20
 interpretation of, 22
 for low birth weight/premature infants, 19–20
 percentile curves in, 16, 21
 plotting data on, 21–22
 software for, 19
 WHO, 16–18, 18t, 28, 32, 34, 40, 44
growth history, 84

hair/nail examination, 123t
head circumference, 23–26
 evaluation of, 25–26
 measurement of, 24
head/neck examination, 124t
height-age equivalent, 40
height-for-age, 23
herbal supplements, 85
hunger cues, 102b–105b
hydrocephalus, 24–26
hyperpigmentation, 122t
ideal body weight (IBW), 43–44
immune markers, 143
indirect calorimetry, 144b, 150
infant formula, 94b, 106b, 108b
 energy/protein content of, 98t
 fluoridated water and, 163–164
 portion sizes of, 110t
infantometer, 32
iron, 138t–139t
 iron-deficiency anemia, 140–142
 supplementation of, 160–162
Joint Commission, screening requirements, 11
laboratory assessment, 134–135
 of immune markers, 143
 of mineral levels, 136, 138–139
 and nutritional anemias, 140–142
 of protein values and nutritional status, 135–136
 of serum electrolytes, 142
 of vitamin levels, 136, 137t
lactating adolescents, Estimated Energy Requirements for, 157t
laxatives, 86b
length. See also stature
 evaluation of, 34–35, 35t–37t
 measurement of, 32
 and nutritional status, 37–38
length board, 32
length-for-age, 34
low birth weight/premature infants, growth charts for, 19–20

macrocytic anemia, 142
macrocephaly, 25–26
magnesium, 139t
males
 Estimated Energy Requirements (EERs) for, 151t
 mean rates of stature gain, 35t–36t
 mid-arm circumference in, 74t–75t
 physical activity coefficients (PAs) for, 152t, 157t
 pubertal development in, 89t–90t, 90
 resting energy expenditures (REEs) for, 155t
 subscapular skinfold-for-age in, 62t–67t
 Total Energy Expenditure (TEE) for, 156t
 triceps skinfold-for-age in, 50t–55t
 USDA estimated calorie requirements, 113t–114t
 velocity of weight gain in, 28t–29t
malnutrition
 Waterlow criteria for, 39, 43–44
 WHO/UNICEF criteria for, 44–45, 45t–47t
manual plotting, of growth data, 21
meat/poultry, energy/protein content of, 100t
medical/health history, 83–88, 84b–87b
medical tests/procedures, 3b, 142, 143b–145b
medications, 85–88. See also drug-nutrient interactions
microcephaly, 25
mid-arm circumference (MAC), 48
 evaluation of, 49, 74t–77t
 measurement of, 48
milk, energy/protein content of, 99t. See also dairy foods
mineral levels, 136, 138t–139t
motor development, 88, 88t
musculoskeletal examination, 131t
MyPlate food intake patterns, 111, 111b–112b

National Nutrient Database, 97
neurological examination, 132t
night blindness, 125t
normocytic anemia of chronic disease, 142
nose/lip/tongue examination, 126t–127t
nutritional risk, assignment of, 7–8, 8b–9b
nutritional status, length/stature and, 37–38
nutrition assessment, 1b, 2–3
 categories of, 3b
 matrix for, 4
Nutrition Care Process (NCP), 1, 1b–2b, 7
nutrition diagnosis, 1b–2b, 3–4
 codes for, 4
 domains of, 3–4
nutrition-focused physical examination, 3b, 121, 121t–133t
nutrition intervention, 2b, 5
nutrition monitoring/evaluation, 2b, 5
nutrition screening, 7–8, 8b–9b
 in clinical settings, 11–12, 12b
 in community/public health settings, 12–13
 efficacy of, 10–11
 personnel for, 10
 tools for, 9–10
NutStat anthropometry software, 19

occipital frontal circumference (OFC), 23–26
evaluation of, 25–26
measurement of, 24
oils, intake patterns, 111b, 114t–117t
Olsen growth curves, 20
overnutrition, 38
overweight/obesity, 27–28, 41
 estimated energy expenditures, 156, 156t
 physical activity coefficients (PAs) and, 157t
 terminology for, 42–43, 43t

pallor, 122t–123t
pellagrous dermatosis, 123t
percentage of IBW (%IBW), 44
percentile curves
 in growth charts, 16, 21
 for head circumference, 24
percent weight change, formula for, 31
PES statements, 2, 4
petechiae, 123t
phosphorus, 139t
photophobia, 125t
physical activity coefficients (PAs), 152t, 157t
physical examination, 3b, 121, 121t–133t
portion sizes, 111, 111b–112b, 114t–117t
 for infants/toddlers, 110t
 for older children, 117, 118t
Prader-Willi syndrome, 153b
prealbumin, 135, 136t
predictive value, of screening tools, 11
pregnant/lactating adolescents, Estimated Energy Requirements (EERs)
 for, 157t
premature infants
 age data corrected for, 23
 growth charts for, 19–20
 OFC corrected for, 23
prenatal history, 84
problem, etiology, and signs/symptoms (PES) statements, 2, 4
protein content, of common foods, 98t–101t
protein foods, 100t
 intake patterns/portion sizes, 111b, 114t–118t
protein values, and nutritional status, 135, 135t–136t
puberty, 89–90, 89t–90t

Recommended Dietary Allowance (RDA), 148
recumbent length. See also stature
 evaluation of, 34–35, 35t–37t
 measurement of, 32
 and nutritional status, 37–38
registered dietitian (RD), 10
respiratory quotient (RQ), 144b
resting energy expenditure (REE), 144b, 154, 155t
retinol-binding protein, 135, 135t
risk, nutritional, 7–8, 8b–9b

SAS (Statistical Analysis Software), 19
Schofield equations, for REE estimation, 155t
screening. See nutrition screening
sensitivity/specificity, of screening tools, 10
serial measurements
 of length/stature, 34, 35t–37t
 of MAC/skinfold thickness, 48
 of weight-for-length, 40–41
serum albumin, 135, 135–136
serum electrolytes, 142–143
severe acute malnutrition (SAM), 44–45, 45–47
sexual development, 89–90, 89–90, 133
short stature, 38–39
skin examination, 121–123

skinfold thickness, 42, 48–49. See also subscapular skinfold thickness; triceps skinfold thickness

slow growth, 39
snacks, energy/protein content of, 101
social environment, 91, 91–92
software
for diet history evaluation, 97
for growth charts, 19
spina bifida, 87, 153
spring balance scale, 26
stadiometer, 33
standing height. See stature

stature
estimation of, 33–34
evaluation of, 34–35, 35–37
measurement of, 33
and nutritional status, 37–38
short, 38–39
stature-for-age, 34
stimulants, 86–87

stunting, 39
subscapular skinfold thickness
evaluation of, 49, 62–73
measurement of, 48

sulfonamides, 87
supplementation, of vitamins/minerals, 85, 158b, 158–165
sweat test, 144b
sweets/sugars
 energy/protein content of, 101t
 intake patterns, 114t–117t

Tanner staging, 89–90, 89t–90t
teeth/gum examination, 128t
thiamin, 137t
thyroid gland examination, 124t
thyroxine-binding protein, 135t
Tolerable Upper Intake level (UL), 148
Total Energy Expenditure (TEE), 150, 156t
tranquilizers, 87b
transferrin, 135, 135t
transthyretin, 135
triceps skinfold thickness (TSF)
 evaluation of, 49
 measurement of, 48, 50t–61t
triene:tetraene ratio, 145b

UL (Tolerable Upper Intake Level), 148
undernutrition, 38
underweight, 27, 41, 43t
unintentional weight loss, 31
United Nations Children’s Fund (UNICEF), 44
urine protein tests, 136t
US Department of Agriculture (USDA)
 estimated daily calorie requirements, 113t–117t
 MyPlate food intake patterns, 111, 111b–112b, 114t–117t, 117
 National Nutrient Database, 97
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vegetables</td>
<td>99t, 111b, 114t–118t</td>
</tr>
<tr>
<td>energy/protein content of vegetables</td>
<td>99t</td>
</tr>
<tr>
<td>intake patterns/portion sizes</td>
<td>114t–118t</td>
</tr>
<tr>
<td>vegetarian/vegan diet</td>
<td>160, 164–165</td>
</tr>
<tr>
<td>velocity of weight gain</td>
<td>27–28, 28t–31t</td>
</tr>
<tr>
<td>vitamin B-12 deficiency</td>
<td>142, 164–165</td>
</tr>
<tr>
<td>vitamin D deficiency</td>
<td>140, 159–160, 164</td>
</tr>
<tr>
<td>vitamin K</td>
<td>159</td>
</tr>
<tr>
<td>vitamin levels, laboratory assessment of</td>
<td>136, 137t</td>
</tr>
<tr>
<td>vitamin supplements</td>
<td>85</td>
</tr>
<tr>
<td>Waterlow criteria, for malnutrition</td>
<td>39, 43–44</td>
</tr>
<tr>
<td>weight</td>
<td>27–31</td>
</tr>
<tr>
<td>evaluation of weight</td>
<td>27–31</td>
</tr>
<tr>
<td>measurement of weight</td>
<td>26–27</td>
</tr>
<tr>
<td>weight-age equivalents</td>
<td>32</td>
</tr>
<tr>
<td>weight-for-age</td>
<td>23, 27</td>
</tr>
<tr>
<td>weight-for-length</td>
<td>40–41</td>
</tr>
<tr>
<td>weight gain, velocity of</td>
<td>27–28, 28t–31t</td>
</tr>
<tr>
<td>weight loss, unintentional</td>
<td>31</td>
</tr>
<tr>
<td>World Health Organization (WHO)</td>
<td></td>
</tr>
<tr>
<td>growth charts</td>
<td>16–18, 18t, 28, 32, 34, 40</td>
</tr>
<tr>
<td>on identification of severe acute malnutrition (SAM(</td>
<td>44, 45t–47t</td>
</tr>
<tr>
<td>motor development milestones</td>
<td>88t</td>
</tr>
<tr>
<td>resting energy expenditure estimates</td>
<td>155</td>
</tr>
<tr>
<td>zinc</td>
<td>139t</td>
</tr>
</tbody>
</table>